-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathss4_deseq_subsys
253 lines (231 loc) · 10.6 KB
/
ss4_deseq_subsys
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
################################################################
# Differential expression analysis of soil metatranscriptomics #
# Data: Hiseq - seed sybsystem #
# Mona Parizadeh - 2020-2021 #
################################################################
library(phyloseq); packageVersion("phyloseq") #‘1.34.0’
library(vegan); packageVersion("vegan") #‘2.5.7’
library(ggplot2); packageVersion("ggplot2") #‘3.3.3’
library(DESeq2); packageVersion("DESeq2") #‘1.30.0’
library(dplyr); packageVersion("dplyr") #‘1.0.4’
# Import data ####
setwd("~/Documents/article3/metatranscriptomics_dbCor/")
ps = readRDS("ps_sys_dbCor.rds")
ps
sample_data(ps)$neonic = as.factor(sample_data(ps)$neonic)
hier <- read.delim("gene_names_dbCor.tsv",sep="\t", header=TRUE)
rownames(hier) = hier$gene
head(hier);dim(hier)
#Phyloseq to deseq2 conversion ####
phTOds = phyloseq_to_deseq2(ps, design = ~ neonic) #dds file
is(phTOds); isS4(phTOds)
#contents
slotNames(phTOds)
#estimate size factors
fcs = estimateSizeFactors(phTOds) #no need to calculate geometric means
#Bayesian estimation of dispersion
dsp = estimateDispersions(fcs)
plotDispEsts(dsp)
# #Variance Stabilizing Transformation
# vst = getVarianceStabilizedData(dsp)
# dim(vst)
# vsd <- vst(dds, fitType = "local")
# dists <- dist(t(assay(vsd)))
# plot(hclust(dists))
# # Save the untransformed data as a separate variable so you can go back to it
# ps0 = ps
# # add the varience stabilized otu numbers into the dataset:
# otu_table(ps0) <- otu_table(vst, taxa_are_rows = TRUE)
# # Now, we re-do the ordination
# ord <- ordinate(ps0, "MDS", "bray", autotransform=T)
# plot_ordination(ps0, ord, type = "samples")
#DESeq ####
dds = DESeq(phTOds, test = "Wald", fitType="local")
head(colData(dds))
# boxplot(log2(assay(dds)), las=2, main="log2(x+1)")
# #Variance Stabilizing Transformation
# vsd <- vst(dds, fitType = "local")
# dists <- dist(t(assay(vsd)))
# plot(hclust(dists))
# boxplot(assay(vsd), las=2, main="vsd")
# plotPCA(vsd, intgroup = c("neonic", "month"))
# library( "genefilter" )
# topVarGenes <- head( order( rowVars( assay(vsd) ), decreasing=TRUE ), 50 )
# pheatmap( assay(vsd)[ topVarGenes, ], scale="row",
# trace="none", dendrogram="column",
# col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255))
# dds <- estimateSizeFactors(dds)
# dds <- estimateDispersions(dds)
# dds <- nbinomWaldTest(dds)
# investigate test results table ####
#results(): extracts a table from a DESeq analysis
resultsNames(dds)
res = results(dds)
res = res[order(res$padj, na.last=NA), ] #remove padj NAs
head(res)
mcols(res, use.names=TRUE) #or: colnames(aca.neo.res)
class(res); is(res)
slotNames(res)
summary(res)
hist(res$padj, breaks=20, col="grey", main="DESeq2 p-value distribution", xlab="DESeq2 P-value", ylab="Frequency")
#How many adjusted p-values were less than 0.1/0.5/0.01?
sum(res$padj < 0.1, na.rm=TRUE)
sum(res$padj < 0.05, na.rm=TRUE)
sum(res$padj < 0.01, na.rm=TRUE)
#Months & Neonic ####
#add a new column including both months and neonic
sample_data(ps)$mnt_neo = as.factor(paste(sample_data(ps)$month, sample_data(ps)$neonic, sep="_"))
sample_data(ps)$mnt_neo = factor(sample_data(ps)$mnt_neo,levels = c("June_N","June_Y",
"September_N","September_Y"))
#change it to numeric
#sample_data(ps)$mnt_neo = as.numeric(sample_data(ps)$mnt_neo)
#Phyloseq to deseq2 conversion ####
phTOds.mnt_neo = phyloseq_to_deseq2(ps, design = ~ mnt_neo) #dds file
is(phTOds.mnt_neo); isS4(phTOds.mnt_neo)
#contents
slotNames(phTOds.mnt_neo)
#estimate size factors
fcs.mnt_neo = estimateSizeFactors(phTOds.mnt_neo) #no need to calculate geometric means
#Bayesian estimation of dispersion
dsp.mnt_neo = estimateDispersions(fcs.mnt_neo)
plotDispEsts(dsp.mnt_neo)
#DESeq ####
dds.mnt_neo = DESeq(phTOds.mnt_neo, test = "Wald", fitType="local")
head(colData(dds.mnt_neo))
# investigate test results table ####
#results(): extracts a table from a DESeq analysis
resultsNames(dds.mnt_neo)
#%June - neonic ####
res.jn_neo = results(dds.mnt_neo,name = "mnt_neo_June_Y_vs_June_N")
res.jn_neo = res.jn_neo[order(res.jn_neo$padj, na.last=NA), ] #remove padj NAs
head(res.jn_neo)
mcols(res.jn_neo, use.names=TRUE) #or: colnames(aca.neo.res)
class(res.jn_neo); is(res.jn_neo)
slotNames(res.jn_neo)
summary(res.jn_neo)
hist(res.jn_neo$padj, breaks=20, col="grey", main="DESeq2 p-value distribution", xlab="DESeq2 P-value", ylab="Frequency")
#How many adjusted p-values were less than 0.1/0.5/0.01?
sum(res.jn_neo$padj < 0.1, na.rm=TRUE)
sum(res.jn_neo$padj < 0.05, na.rm=TRUE)
sum(res.jn_neo$padj < 0.01, na.rm=TRUE)
# #Set padj the threshold ####
# sigtab.jn_neo1 = res.jn_neo[(res.jn_neo$padj < 0.1), ]
# sigtab.jn_neo1
# hier.jn1 = hier %>% dplyr::filter(rownames(hier) %in% rownames(sigtab.jn_neo1))
# #Combine gene with results ####
# sigtab.jn_neo1 = cbind(as(sigtab.jn_neo1, "data.frame"),
# as(hier.jn1[rownames(sigtab.jn_neo1), ], "matrix"))
# sigtab.jn_neo1
# ggplot(sigtab.jn_neo1, aes(x=rownames(sigtab.jn_neo1), y=log2FoldChange, color=level1)) +
# geom_hline(yintercept = 0.0, color = "gray", size = 0.5) +
# geom_point(size=4) +
# theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5, size = 5))
#
# # Phylum order based on log2Foldchange
# genLev1 = tapply(sigtab.jn_neo1$log2FoldChange, sigtab.jn_neo1$level1, function(x) max(x))
# genLev1 = sort(genLev1, TRUE)
# sigtab.jn_neo1$level1 = factor(as.character(sigtab.jn_neo1$level1), levels=names(genLev1))
# # Order genera based on their log2fold
# lev4 = tapply(sigtab.jn_neo1$log2FoldChange, sigtab.jn_neo1$level4, function(x) max(x))
# lev4 = sort(lev4, TRUE)
# sigtab.jn_neo1$level4 = factor(as.character(sigtab.jn_neo1$level4), levels=names(lev4))
# ggplot(sigtab.jn_neo1, aes(x=level4, y=log2FoldChange, color=level1)) +
# theme_classic() +
# geom_hline(yintercept = 0.0, color = "gray", size = 0.5) +
# geom_point(size=5) +
# #scale_color_manual(values=c("cornflowerblue","indianred1","mediumvioletred","darkolivegreen4")) +
# theme(axis.text.x = element_text(size = 14, angle = -45, hjust = 0, vjust=0.5),
# axis.text.y = element_text(size = 12),
# axis.title = element_text( size = 14, face = "bold"),
# legend.title = element_text(size=14, face="bold"),
# legend.text=element_text(size=14),
# legend.position = "right") +
# annotate("text", x = 1.8, y = 0.5, label = 'atop(bold("Neonicotinoid-treated"))', parse = TRUE,
# size = 6, colour = "azure4") +
# annotate("text", x = 1, y = -1, label = 'atop(bold("Control"))', parse = TRUE,
# size = 6, colour = "azure4")
#%September - neonic ####
res.sp_neo = results(dds.mnt_neo,contrast = c("mnt_neo","September_Y","September_N"))
res.sp_neo = res.sp_neo[order(res.sp_neo$padj, na.last=NA), ] #remove padj NAs
head(res.sp_neo)
mcols(res.sp_neo, use.names=TRUE) #or: colnames(aca.neo.res)
class(res.sp_neo); is(res.sp_neo)
slotNames(res.sp_neo)
summary(res.sp_neo)
hist(res.sp_neo$padj, breaks=20, col="grey", main="DESeq2 p-value distribution", xlab="DESeq2 P-value", ylab="Frequency")
#How many adjusted p-values were less than 0.1/0.5/0.01?
sum(res.sp_neo$padj < 0.1, na.rm=TRUE)
sum(res.sp_neo$padj < 0.05, na.rm=TRUE)
sum(res.sp_neo$padj < 0.01, na.rm=TRUE)
# #Set padj the threshold ####
# sigtab.sp_neo1 = res.sp_neo[(res.sp_neo$padj < 0.1), ]
# sigtab.sp_neo1
# hier.sp1 = hier %>% dplyr::filter(rownames(hier) %in% rownames(sigtab.sp_neo1))
# #Combine gene with results ####
# sigtab.sp_neo1 = cbind(as(sigtab.sp_neo1, "data.frame"),
# as(hier.sp1[rownames(sigtab.sp_neo1), ], "matrix"))
# sigtab.sp_neo1
#Years & Neonic ####
#add a new column including both years and neonic
sample_data(ps)$yr_neo = as.factor(paste(sample_data(ps)$year, sample_data(ps)$neonic, sep="_"))
sample_data(ps)$yr_neo = factor(sample_data(ps)$yr_neo,levels = c("2016_N","2016_Y",
"2017_N","2017_Y"))
#Phyloseq to deseq2 conversion ####
phTOds.yr_neo = phyloseq_to_deseq2(ps, design = ~ yr_neo) #dds file
is(phTOds.yr_neo); isS4(phTOds.yr_neo)
#contents
slotNames(phTOds.yr_neo)
#estimate size factors
fcs.yr_neo = estimateSizeFactors(phTOds.yr_neo) #no need to calculate geometric means
#Bayesian estimation of dispersion
dsp.yr_neo = estimateDispersions(fcs.yr_neo)
plotDispEsts(dsp.yr_neo)
#DESeq ####
dds.yr_neo = DESeq(phTOds.yr_neo, test = "Wald", fitType="local")
head(colData(dds.yr_neo))
# investigate test results table ####
#results(): extracts a table from a DESeq analysis
resultsNames(dds.yr_neo)
#%2016 - neonic ####
res.16_neo = results(dds.yr_neo,name = "yr_neo_2016_Y_vs_2016_N")
res.16_neo = res.16_neo[order(res.16_neo$padj, na.last=NA), ] #remove padj NAs
head(res.16_neo)
mcols(res.16_neo, use.names=TRUE) #or: colnames(aca.neo.res)
class(res.16_neo); is(res.16_neo)
slotNames(res.16_neo)
summary(res.16_neo)
hist(res.16_neo$padj, breaks=20, col="grey", main="DESeq2 p-value distribution", xlab="DESeq2 P-value", ylab="Frequency")
#How many adjusted p-values were less than 0.1/0.5/0.01?
sum(res.16_neo$padj < 0.1, na.rm=TRUE)
sum(res.16_neo$padj < 0.05, na.rm=TRUE)
sum(res.16_neo$padj < 0.01, na.rm=TRUE)
#Set padj the threshold ####
sigtab.16_neo05 = res.16_neo[(res.16_neo$padj < 0.05), ] #same at 0.01
sigtab.16_neo05
hier.1605 = hier %>% dplyr::filter(rownames(hier) %in% rownames(sigtab.16_neo05))
#Combine gene with results ####
sigtab.16_neo05 = cbind(as(sigtab.16_neo05, "data.frame"),
as(hier.1605[rownames(sigtab.16_neo05), ], "matrix"))
sigtab.16_neo05
#%2017 - neonic ####
res.17_neo = results(dds.yr_neo,contrast = c("yr_neo","2017_Y","2017_N"))
res.17_neo = res.17_neo[order(res.17_neo$padj, na.last=NA), ] #remove padj NAs
head(res.17_neo)
mcols(res.17_neo, use.names=TRUE) #or: colnames(aca.neo.res)
class(res.17_neo); is(res.17_neo)
slotNames(res.17_neo)
summary(res.17_neo)
hist(res.17_neo$padj, breaks=20, col="grey", main="DESeq2 p-value distribution", xlab="DESeq2 P-value", ylab="Frequency")
#How many adjusted p-values were less than 0.1/0.5/0.01?
sum(res.17_neo$padj < 0.1, na.rm=TRUE)
sum(res.17_neo$padj < 0.05, na.rm=TRUE)
sum(res.17_neo$padj < 0.01, na.rm=TRUE)
#Set padj the threshold ####
sigtab.17_neo05 = res.17_neo[(res.17_neo$padj < 0.05), ]
sigtab.17_neo05
hier.1705 = hier %>% dplyr::filter(rownames(hier) %in% rownames(sigtab.17_neo05))
#Combine gene with results ####
sigtab.17_neo05 = cbind(as(sigtab.17_neo05, "data.frame"),
as(hier.1705[rownames(sigtab.17_neo05), ], "matrix"))
sigtab.17_neo05
save.image("~/Documents/article3/metatranscriptomics_dbCor/a3_s4_deseq_subsys.RData")