-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_gui.m
537 lines (430 loc) · 21.4 KB
/
simple_gui.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
function varargout = simple_gui(varargin)
% SIMPLE_GUI MATLAB code for simple_gui.fig
% SIMPLE_GUI, by itself, creates a new SIMPLE_GUI or raises the existing
% singleton*.
%
% H = SIMPLE_GUI returns the handle to a new SIMPLE_GUI or the handle to
% the existing singleton*.
%
% SIMPLE_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SIMPLE_GUI.M with the given input arguments.
%
% SIMPLE_GUI('Property','Value',...) creates a new SIMPLE_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before simple_gui_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to simple_gui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help simple_gui
% Last Modified by GUIDE v2.5 26-Aug-2015 10:40:19
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @simple_gui_OpeningFcn, ...
'gui_OutputFcn', @simple_gui_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before simple_gui is made visible.
function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)
rng(1);
num_clusters = 10;
num_outliers = 20;
num_points_in_cluster = 20;
width_in_cluster = 0.1;
sigma = 0.0001;
K = 20;
mu_x = 1*rand(num_clusters,1);
mu_y = 1*rand(num_clusters,1);
out_x = 1*rand(num_outliers,1);
out_y = 1*rand(num_outliers,1);
X_Vec = [out_x];
Y_Vec = [out_y];
for i=1:num_clusters
x = width_in_cluster*randn(num_points_in_cluster,1);
y = width_in_cluster*randn(num_points_in_cluster, 1);
x = x + mu_x(i);
y = y + mu_y(i);
X_Vec = [X_Vec; x];
Y_Vec = [Y_Vec; y];
end
z = [x,y];
handles.z = z;
handles.X_Vec = X_Vec;
handles.Y_Vec = Y_Vec;
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to simple_gui (see VARARGIN)
% Choose default command line output for simple_gui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes simple_gui wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = simple_gui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1
% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function num_clusters_Callback(hObject, eventdata, handles)
% hObject handle to num_clusters (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of num_clusters as text
% str2double(get(hObject,'String')) returns contents of num_clusters as a double
% --- Executes during object creation, after setting all properties.
function num_clusters_CreateFcn(hObject, eventdata, handles)
% hObject handle to num_clusters (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function num_points_in_cluster_Callback(hObject, eventdata, handles)
% hObject handle to num_points_in_cluster (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of num_points_in_cluster as text
% str2double(get(hObject,'String')) returns contents of num_points_in_cluster as a double
% --- Executes during object creation, after setting all properties.
function num_points_in_cluster_CreateFcn(hObject, eventdata, handles)
% hObject handle to num_points_in_cluster (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function width_in_cluster_Callback(hObject, eventdata, handles)
% hObject handle to width_in_cluster (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of width_in_cluster as text
% str2double(get(hObject,'String')) returns contents of width_in_cluster as a double
%handles.width_in_cluster
%printf('%s\n', handles.width_in_cluster);
% --- Executes during object creation, after setting all properties.
function width_in_cluster_CreateFcn(hObject, eventdata, handles)
% hObject handle to width_in_cluster (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function num_outliers_Callback(hObject, eventdata, handles)
% hObject handle to num_outliers (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of num_outliers as text
% str2double(get(hObject,'String')) returns contents of num_outliers as a double
% --- Executes during object creation, after setting all properties.
function num_outliers_CreateFcn(hObject, eventdata, handles)
% hObject handle to num_outliers (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton_plot.
function pushbutton_plot_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%handles.width
val = get(handles.popupmenu_seed_options, 'Value');
str = get(handles.popupmenu_seed_options, 'String');
seed_choice = str(val);
switch seed_choice{1}
case 'Fixed random seed'
rng(1);
case 'Seeded by current time'
rng('shuffle');
end
%rng(1);
num_clusters = str2num(get(handles.num_clusters, 'String'));
num_outliers = str2num(get(handles.num_outliers, 'String'));
num_points_in_cluster = str2num(get(handles.num_points_in_cluster, 'String'));
width_in_cluster = str2num(get(handles.width_in_cluster, 'String'));
%sigma = 0.01;
%func_choice = 5 % 1 facility location, 2 min-faciity location, 3 min-min dist, 4, sum-sum dist, 5 graph-cut function, 6 min-V dist
%K = 20;
mu_x = 1*rand(num_clusters,1);
mu_y = 1*rand(num_clusters,1);
out_x = 1*rand(num_outliers,1);
out_y = 1*rand(num_outliers,1);
X_Vec = [out_x];
Y_Vec = [out_y];
for i=1:num_clusters
x = width_in_cluster*randn(num_points_in_cluster,1);
y = width_in_cluster*randn(num_points_in_cluster, 1);
x = x + mu_x(i);
y = y + mu_y(i);
X_Vec = [X_Vec; x];
Y_Vec = [Y_Vec; y];
end
z = [x,y];
plot(X_Vec,Y_Vec, 'r*');hold on;
plot(X_Vec(1:num_outliers),Y_Vec(1:num_outliers), 'g*'); hold off;
axis equal;
xlabel('X-axis');
ylabel('Y-axis');
title('2-D synthetic data');
legend('Points in clusters', 'Outliers');
% --- Executes on selection change in popupmenu_selection_choice.
function popupmenu_selection_choice_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu_selection_choice (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_selection_choice contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu_selection_choice
val = get(handles.popupmenu_selection_choice, 'Value');
str = get(handles.popupmenu_selection_choice, 'String');
selection_choice = str(val);
%sigma
%dist
switch selection_choice{1}
case 'Facility Location + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = \exp{-d_{i,j}^2 / \sigma}');
case 'Facility Location + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = -d_{i,j}');
case 'Robust Facility Location + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = \exp{-d_{i,j}^2 / \sigma}');
case 'Robust Facility Location + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = -d_{i,j}');
case 'Min-pairwise Distance Function'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in A}\max_{j \in A \setminus i} d_{i,j}');
case 'Sum-pairwise Distance Function'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in A}\sum_{j \in A} d_{i,j}');
case 'Graph-cut Function + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in A}\sum_{j \in V\A} s_{i,j}, where s_{i,j} = \exp{-d_{i,j}^2 / \sigma');
case 'Graph-cut Function + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in A}\sum_{j \in V\A} s_{i,j}, where s_{i,j} = -d_{i,j}');
case 'Min-V-Distance Function'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in V} \min_{j \in A\i} d_{i,j}');
case '-SumSumPairwise Similarity + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = - \sum_{i \in A}\sum_{j \in A} s_{i,j}, where s_{i,j} = \exp(-d_{i,j}^2 / \sigma)');
case '-SumSumPairwise Similarity + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = - \sum_{i \in A}\sum_{j \in A} s_{i,j}, where s_{i,j} = -d_{i,j}');
case 'LogDet + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \log det(I_A + S_A), where s_{i,j} = \exp(-d_{i,j}^2 / \sigma)');
case 'LogDet + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = \log det(I_A + S_A), where s_{i,j} = -d_{i,j}');
case 'Random'
set(handles.displayEquation, 'String', '');
end
% --- Executes during object creation, after setting all properties.
function popupmenu_selection_choice_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu_selection_choice (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function sigma_Callback(hObject, eventdata, handles)
% hObject handle to sigma (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of sigma as text
% str2double(get(hObject,'String')) returns contents of sigma as a double
% --- Executes during object creation, after setting all properties.
function sigma_CreateFcn(hObject, eventdata, handles)
% hObject handle to sigma (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function K_Callback(hObject, eventdata, handles)
% hObject handle to K (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of K as text
% str2double(get(hObject,'String')) returns contents of K as a double
% --- Executes during object creation, after setting all properties.
function K_CreateFcn(hObject, eventdata, handles)
% hObject handle to K (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton_selection.
function pushbutton_selection_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_selection (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
num_clusters = str2num(get(handles.num_clusters, 'String'));
num_outliers = str2num(get(handles.num_outliers, 'String'));
num_points_in_cluster = str2num(get(handles.num_points_in_cluster, 'String'));
width_in_cluster = str2num(get(handles.width_in_cluster, 'String'));
K = str2num(get(handles.K, 'String'));
sigma = str2num(get(handles.sigma, 'String'));
val = get(handles.popupmenu_seed_options, 'Value');
str = get(handles.popupmenu_seed_options, 'String');
seed_choice = str(val);
switch seed_choice{1}
case 'Fixed random seed'
rng(1);
case 'Seeded by current time'
rng('shuffle');
end
mu_x = 1*rand(num_clusters,1);
mu_y = 1*rand(num_clusters,1);
out_x = 1*rand(num_outliers,1);
out_y = 1*rand(num_outliers,1);
X_Vec = [out_x];
Y_Vec = [out_y];
for i=1:num_clusters
x = width_in_cluster*randn(num_points_in_cluster,1);
y = width_in_cluster*randn(num_points_in_cluster, 1);
x = x + mu_x(i);
y = y + mu_y(i);
X_Vec = [X_Vec; x];
Y_Vec = [Y_Vec; y];
end
z = [x,y];
%clf;
%delete(PlotData);
%X_Vec(:) = 0.5;
plot(X_Vec,Y_Vec, 'r*');hold on;
plot(X_Vec(1:num_outliers),Y_Vec(1:num_outliers), 'g*'); hold on;
mat = [X_Vec, Y_Vec];
A=repmat(diag(mat*mat'), 1,length(mat));
B=repmat(diag(mat*mat')', length(mat), 1);
dist = A+B-2*mat*mat';
dist = sqrt(dist);
dist_vec = reshape(dist, [], 1);
val = get(handles.popupmenu_selection_choice, 'Value');
str = get(handles.popupmenu_selection_choice, 'String');
selection_choice = str(val);
%sigma
%dist
switch selection_choice{1}
case 'Facility Location + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = \exp{-d_{i,j}^2 / \sigma}');
%handles = uibutton('Style', 'pushbutton', 'String', 'Set \beta', 'Interpreter', 'tex');
sim_matrix = exp(-(dist.^2)/sigma);
list = greedy_facility_location(sim_matrix, K);
case 'Facility Location + Linear Kernel'
sim_matrix = -dist;
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = -d_{i,j}');
list = greedy_facility_location(sim_matrix, K);
case 'Robust Facility Location + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = \exp{-d_{i,j}^2 / \sigma}');
sim_matrix = exp(-(dist.^2)/sigma);
list = greedy_min_facility_location(sim_matrix, K);
case 'Robust Facility Location + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in V}\max_{j \in A} s_{i,j}, where s_{i,j} = -d_{i,j}');
sim_matrix = -dist;
list = greedy_min_facility_location(sim_matrix, K);
case 'Min-pairwise Distance Function'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in A}\max_{j \in A \setminus i} d_{i,j}');
list = greedy_min_pairwise_distance(dist, K);
case 'Sum-pairwise Distance Function'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in A}\sum_{j \in A} d_{i,j}');
list = greedy_sum_pairwise_distance(dist, K);
case 'Graph-cut Function + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in A}\sum_{j \in V\A} s_{i,j}, where s_{i,j} = \exp{-d_{i,j}^2 / \sigma');
lambda1 = 1;
lambda2 = 1;
sim_matrix = exp(-(dist.^2)/sigma);
list = greedy_graphcut_function(sim_matrix, K, lambda1, lambda2);
case 'Graph-cut Function + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = \sum_{i \in A}\sum_{j \in V\A} s_{i,j}, where s_{i,j} = -d_{i,j}');
lambda1 = 1;
lambda2 = 1;
sim_matrix = -dist;
list = greedy_graphcut_function(sim_matrix, K, lambda1, lambda2);
case 'Min-V-Distance Function'
set(handles.displayEquation, 'String', 'f(A) = \min_{i \in V} \min_{j \in A\i} d_{i,j}');
list = greedy_min_V_pairwise_distance(dist, K);
case '-SumSumPairwise Similarity + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = - \sum_{i \in A}\sum_{j \in A} s_{i,j}, where s_{i,j} = \exp(-d_{i,j}^2 / \sigma)');
sim_matrix = exp(-(dist).^2/sigma);
list = greedy_neg_sum_sum_pairwise_similarity(sim_matrix, K);
case '-SumSumPairwise Similarity + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = - \sum_{i \in A}\sum_{j \in A} s_{i,j}, where s_{i,j} = -d_{i,j}');
sim_matrix = -(dist);
list = greedy_neg_sum_sum_pairwise_similarity(sim_matrix, K);
case 'LogDet + Gaussian Kernel'
set(handles.displayEquation, 'String', 'f(A) = \log det(I_A + S_A), where s_{i,j} = \exp(-d_{i,j}^2 / \sigma)');
sim_matrix = exp(-(dist).^2/sigma);
gamma = 1;
list = greedy_log_det_similarity(sim_matrix, K, gamma);
case 'LogDet + Linear Kernel'
set(handles.displayEquation, 'String', 'f(A) = \log det(I_A + S_A), where s_{i,j} = -d_{i,j}');
norm_vec = sqrt(sum(mat.^2,2));
%sim_matrix = mat * mat'./ (norm_vec*norm_vec');
sim_matrix = mat * mat';
%sim_matrix = -dist;
gamma = 0.1;
list = greedy_log_det_similarity(sim_matrix, K, gamma);
case 'Random'
set(handles.displayEquation, 'String', '');
rng('shuffle');
order = randperm(size(dist,1));
list = order(1:K);
end
for i=1:K
s = strcat('\leftarrow ', num2str(i));
text(X_Vec(list(i)), Y_Vec(list(i)), s, 'HorizontalAlignment', 'left', 'fontsize', 20);
end
plot(X_Vec(list),Y_Vec(list), 'bO');hold off;
axis equal;
xlabel('X-axis');
ylabel('Y-axis');
title('2-D synthetic data');
legend('Points in clusters', 'Outliers');