-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable-of-contents.json
87 lines (87 loc) · 2.3 KB
/
table-of-contents.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
{
"sample1": {
"title": "Understanding Large Language Model Architectures",
"sections": [
{
"title": "1. Fundamentals of LLMs",
"subsections": [
"1.1 Definition and Key Concepts",
"1.2 Historical Development of LLMs"
]
},
{
"title": "2. Core Architectural Components",
"subsections": [
"2.1 Transformer Architecture",
"2.2 Attention Mechanisms"
]
},
{
"title": "3. Advanced LLM Architectures",
"subsections": [
"3.1 GPT (Generative Pre-trained Transformer)",
"3.2 BERT and Its Variants"
]
},
{
"title": "4. Training and Optimization Techniques",
"subsections": [
"4.1 Pre-training and Fine-tuning",
"4.2 Scaling Laws and Efficiency"
]
}
]
},
"sample2": {
"title": "Innovations in LLM Architecture Design",
"sections": [
{
"title": "1. Efficient Attention Mechanisms",
"subsections": [
"1.1 Sparse Attention",
"1.2 Linear Attention"
]
},
{
"title": "2. Parameter-Efficient Fine-tuning",
"subsections": [
"2.1 Adapter Layers",
"2.2 Prompt Tuning"
]
},
{
"title": "3. Multimodal LLM Architectures",
"subsections": [
"3.1 Vision-Language Models",
"3.2 Audio-Text Integration"
]
}
]
},
"sample3": {
"title": "Evaluating and Improving LLM Architectures",
"sections": [
{
"title": "1. Benchmarking LLM Performance",
"subsections": [
"1.1 Language Understanding Metrics",
"1.2 Generation Quality Assessment"
]
},
{
"title": "2. Addressing LLM Limitations",
"subsections": [
"2.1 Bias Mitigation Strategies",
"2.2 Improving Factual Accuracy"
]
},
{
"title": "3. Future Directions in LLM Architecture",
"subsections": [
"3.1 Neuromorphic Approaches",
"3.2 Quantum-Inspired Models"
]
}
]
}
}