-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
224 lines (190 loc) · 9.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from datetime import datetime
import time
import cartopy as cart
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cmocean
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage as ndimage
from cftime import num2pydate
from metpy.units import units
from siphon.catalog import TDSCatalog
from siphon.ncss import NCSS
# Set the date/time to plot. CFSR/CFSv2 is hourly data, so make sure you set this at a whole hour, i.e. 0 minutes and 0 seconds
dt = datetime(2011, 5, 28, 0)
# Set the region to plot. [west, east, south, north]
plot_extent = [260, 330, -70, -40]
# Set the region of the subset of data to retrieve. I'm plotting with orthographic projection at high latitude, so I extend this region in west/east direction to avoid gaps at the poleward corners of the plot. [west, east, south, north]
data_extent = [235, 355, -70, -40]
# If the date/time chosen is between 1 Jan 1979 and 31 Mar 2011, CFSR reanalysis data is retrieved. If it is between 1 Apr 2011 and present, CFSv2 operational analysis data is retrieved.
cfsr_dates = [datetime(1979, 1, 1, 0), datetime(2011, 3, 31, 23, 59)]
cfsrv2_dates = [datetime(2011, 4, 1, 0), datetime.utcnow()]
# The API calls to retrieve data often result in server errors. These are errors occurring on NOAA's servers and are out of our control. Our code reattempts the API calls until they return successfully. The following variables determine the number of seconds to wait between attempts and how many attempts to try before giving up and stopping the program. The delay between attempts is to avoid spamming the servers.
retry_delay = 10
retry_limit = 100
# Helper function for finding proper time variable
def find_time_var(var, time_basename='time'):
for coord_name in var.coordinates.split():
if coord_name.startswith(time_basename):
return coord_name
raise ValueError('No time variable found for ' + var.name)
def retrieve_ncss(cat_url, ds_name, dt):
ncss = None
count = 0
while ncss is None and count < retry_limit:
count += 1
try:
print(f'Retrieving catalog from {cat_url}...')
cat = TDSCatalog(cat_url)
#print(f'{cat.datasets = }\n')
ds = cat.datasets[ds_name]
print(f'Retrieving NCSS dataset for {ds_name}...')
ncss = ds.subset()
except Exception as e:
print(f'Attempt #{count}: {e}')
time.sleep(retry_delay)
if ncss is not None:
return ncss
else:
raise Exception(f'Retry limit ({retry_limit}) reached.')
def retrieve_data(ncss, query):
data = None
count = 0
while data is None and count < retry_limit:
count += 1
try:
print(f'Querying dataset...')
# Obtain the data we've queried for
data = ncss.get_data(query)
except Exception as e:
print(f'Attempt #{count}: {e}')
time.sleep(retry_delay)
if data is not None:
return data
else:
raise Exception(f'Retry limit ({retry_limit}) reached.')
def set_query_params(query, dt, extent):
query.time(dt)
query.lonlat_box(west=extent[0], east=extent[1], south=extent[2], north=extent[3])
query.accept('netcdf')
return query
if dt > cfsr_dates[0] and dt < cfsr_dates[1]:
base_url = 'https://www.ncei.noaa.gov/thredds/catalog/model-cfs_reanl_ts/'
cat_url = f'{base_url}{dt:%Y}/{dt:%Y%m}/catalog.xml'
ds_title = 'CFS Reanalysis'
elif dt > cfsrv2_dates[0] and dt < cfsrv2_dates[1]:
base_url = 'https://www.ncei.noaa.gov/thredds/catalog/model-cfs_v2_anl_ts/'
cat_url = f'{base_url}{dt:%Y}/{dt:%Y%m}/catalog.xml'
ds_title = 'CFSv2 Operational Analysis'
#base_url = 'https://www.ncei.noaa.gov/thredds/model-gfs-g4-anl-files-old/'
#cat = TDSCatalog(f'{base_url}{dt:%Y%m}/{dt:%Y%m%d}/catalog.xml')
#ncss = cat.datasets[f'gfsanl_4_{dt:%Y%m%d}_{dt:%H}00_000.grb2'].subset()
ds_name = f'prmsl.l.gdas.{dt:%Y%m}.grib2'
ncss = retrieve_ncss(cat_url, ds_name, dt)
query = ncss.query()
query = set_query_params(query, dt, data_extent)
query.variables('Pressure_reduced_to_MSL_msl')
mslp_data = retrieve_data(ncss, query)
ds_name = f'tmp2m.l.gdas.{dt:%Y%m}.grib2'
ncss = retrieve_ncss(cat_url, ds_name, dt)
query = ncss.query()
query = set_query_params(query, dt, data_extent)
query.variables('Temperature_height_above_ground')
temp_data = retrieve_data(ncss, query)
ds_name = f'wnd10m.l.gdas.{dt:%Y%m}.grib2'
ncss = retrieve_ncss(cat_url, ds_name, dt)
query = ncss.query()
query = set_query_params(query, dt, data_extent)
query.variables('u-component_of_wind_height_above_ground',
'v-component_of_wind_height_above_ground')
wind_data = retrieve_data(ncss, query)
ds_name = f'ocnsst.l.gdas.{dt:%Y%m}.grib2'
ncss = retrieve_ncss(cat_url, ds_name, dt)
query = ncss.query()
query = set_query_params(query, dt, data_extent)
query.variables('Potential_temperature_depth_below_sea_1_Hour_Average')
sst_data = retrieve_data(ncss, query)
def get_data_at_time(data, var_names, dt):
time_var = data.variables[find_time_var(data.variables[var_names[0]])]
# Convert number of hours since the reference time into an actual date
data_time = num2pydate(time_var[:].squeeze(), time_var.units)
# Get the indices where the specified date/time occurs. Each model run contains a set of model output date/times, so there can be multiple occurences of model outputs with the date/time we are looking for.
data_time_indices = np.where(data_time == dt)
# We get the *last* occurance of the date/time we are looking for (from the latest model run) because this would be presumably be the most accurate data available.
last_time_index = (data_time_indices[0][-1], data_time_indices[1][-1])
data_at_time = []
for var_name in var_names:
data_at_time.append(data.variables[var_name][:].squeeze()[last_time_index])
lat = data.variables['lat'][:].squeeze()
lon = data.variables['lon'][:].squeeze()
return data_at_time, lat, lon
data_at_time, mslp_lat, mslp_lon = get_data_at_time(mslp_data, ['Pressure_reduced_to_MSL_msl'], dt)
mslp = units.Pa * data_at_time[0]
data_at_time, temp_lat, temp_lon = get_data_at_time(temp_data, ['Temperature_height_above_ground'], dt)
temp = units.K * data_at_time[0]
data_at_time, wind_lat, wind_lon = get_data_at_time(wind_data, ['u-component_of_wind_height_above_ground', 'v-component_of_wind_height_above_ground'], dt)
u_wind_10m = units('m/s') * data_at_time[0]
v_wind_10m = units('m/s') * data_at_time[1]
data_at_time, sst_lat, sst_lon = get_data_at_time(sst_data, ['Potential_temperature_depth_below_sea_1_Hour_Average'], dt)
sst = units.K * data_at_time[0]
# Convert winds to knots
u_wind_10m.ito('kt')
v_wind_10m.ito('kt')
# Combine 1D latitude and longitudes into a 2D grid of locations
mslp_lon_2d, mslp_lat_2d = np.meshgrid(mslp_lon, mslp_lat)
temp_lon_2d, temp_lat_2d = np.meshgrid(temp_lon, temp_lat)
wind_lon_2d, wind_lat_2d = np.meshgrid(wind_lon, wind_lat)
sst_lon_2d, sst_lat_2d = np.meshgrid(sst_lon, sst_lat)
# Smooth MSLP a little
# Be sure to only put in a 2D lat/lon or Y/X array for smoothing
smooth_mslp = ndimage.gaussian_filter(mslp, sigma=3, order=0) * units.Pa
smooth_mslp.ito('hPa')
# Smooth temp a little
smooth_temp = ndimage.gaussian_filter(temp, sigma=1, order=0) * units.K
# Set Projection of Data
datacrs = ccrs.PlateCarree()
# Set Projection of Plot
center_lon = (plot_extent[0] + plot_extent[1])/2.0
center_lat = (plot_extent[2] + plot_extent[3])/2.0
projection = ccrs.Orthographic(center_lon, center_lat)
# Create new figure
plt.style.use('dark_background')
fig = plt.figure(figsize=(25.60, 10.80))
# Add the map and set the extent
ax = plt.subplot(111, projection=projection)
plt.title(f'{ds_title} - MSLP (hPa), 2m Temperature (C), Wind Barbs (kt)'
f' {dt:%d %B %Y %H:%MZ}', fontsize=16)
ax.set_extent(plot_extent)
ax.coastlines()
ax.add_feature(cart.feature.LAND, edgecolor='k', facecolor='#aaa')
gl = ax.gridlines(crs=datacrs, draw_labels=True, alpha=0.5, linestyle='--')
gl.top_labels = False
gl.right_labels = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
# Add state boundaries to plot
states_provinces = cfeature.NaturalEarthFeature(category='cultural',
name='admin_1_states_provinces_lakes',
scale='50m', facecolor='none')
ax.add_feature(states_provinces, edgecolor='black', linewidth=1)
# Add country borders to plot
country_borders = cfeature.NaturalEarthFeature(category='cultural',
name='admin_0_countries',
scale='50m', facecolor='none')
ax.add_feature(country_borders, edgecolor='black', linewidth=1)
# Plot SST Contours
cs3 = ax.contourf(sst_lon_2d, sst_lat_2d, sst.to(units('degC')), levels=100, cmap=cmocean.cm.thermal, transform=datacrs)
cbar = fig.colorbar(cs3).set_label(f'sea surface temperature (potential temperature at 5m depth) (C)', rotation=-90, va='bottom')
# Plot MSLP Contours
clev_mslp = np.arange(0, 1200, 4)
cs = ax.contour(mslp_lon_2d, mslp_lat_2d, smooth_mslp, clev_mslp, linewidths=1.5, linestyles='solid', transform=datacrs)
plt.clabel(cs, fontsize=10, inline=1, inline_spacing=10, fmt='%i', rightside_up=True, use_clabeltext=True)
# Plot 2m Temperature Contours
clevtemp = np.arange(-60, 101, 4)
cs2 = ax.contour(temp_lon_2d, temp_lat_2d, smooth_temp.to(units('degC')), clevtemp, colors='tab:red', linewidths=1.75, linestyles='dotted', transform=datacrs)
plt.clabel(cs2, fontsize=10, inline=1, inline_spacing=10, fmt='%i', rightside_up=True, use_clabeltext=True)
# Plot 10m Wind Barbs
barbs = ax.barbs(wind_lon_2d, wind_lat_2d, u_wind_10m.magnitude, v_wind_10m.magnitude, barbcolor='white', flagcolor='white', length=6, regrid_shape=20, pivot='middle', transform=datacrs)
plt.show()