-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMFT.py
1572 lines (1439 loc) · 65.6 KB
/
MFT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
'Python' library for combined sea state and atmospheric boundary layer model
Developed by Mark A. Bourassa
Based on Original Bourassa-Vincent-Wood combined sea state and atmospheric
boundary layer model developed at Purdue University. Several upgrades and
options have been added while at the Center for Ocean-Atmospheric
Prediction Studies (COAPS) at Florida State University.
Dr. Bourassa is currently (Aug. 2003) an Assistant Professor at the Florida
State Universiy.
Please send comments, suggestions, and requests for added features to
Dr. Mark Bourassa
Center for Ocean-Atmospheric Prediction Studies
Florida State University
Tallahassee, FL 32306-2840
Email: [email protected]
Phone: (850) 644-6923
The bulk of 'in code' documentation is in the subroutine pmix_. Documentation
is also on the COAPS website: http://coaps.fsu.edu/~bourassa/bvw98_docs.html.
'''
import math as m
### TRUE and FALSE ###
TRUE = 1
FALSE = 0
# # # Globals # # #
#beta-primes are either zero or unity, depending on whether or not
#their respective type of roughness element exists. Beta's are the
#weights for the different types of elements.
betas = [0,0]
betac = [0,0]
betag = [0,0]
u = [0,0]
u_orb = [0,0]
u_sfc = [0,0]
ustar = [0,0]
wa = [0,0]
zz = [0,0]
hsig = [0,0]
wstar2 = 0
denair = 0
# # # Constants # # #
B = 0.0190000 # Wu's equilibrium const for capillary waves []
KV = 0.40000 # von Karman's constant []
G = 9.81000 # gravitational acc. (at sea level) [m/s^2]
H = 1000.0 # approximate height of boundary layer (at low wind speed) [m]
PI2 = 6.28318 # two PI []
R = 287.05000 # specific gas constant for dry air [J/kg]
RW = 441.0000 # specific gas constant for water vapour [J/kg]
DTR = 3.14159 / 180.0 # degrees to radians conversion factor
stefanBoltzmann = 5.67e-08
Prt = 1.00 # turbulent Prandtl number []
Prair = 0.7
PrWater = 7.0
Sc = 1.00 # turbulent Schmidt number []
thermalDiff = 2e-05 # or air from Gill p. 71 [m^2/s]
molecularDiff = 2.4e-05 # for H2O in air from Gill p. 68 [m^2/s]
#Next value determines water type for solar absorption
#1 = Type I, 1.1 = Type IA, 1.2 = Type IB, 2.0 = Type II,
#3.0 = Type III, 0 = no solar absorption
waterType = 1
### CENTRY ###
def pmix_( dyn_in_prm, dyn_in_val, dyn_in_val2, CONVECT, CONV_CRIT, pressure,
air_moist_prm, air_moist_val_dum, sfc_moist_prm, sfc_moist_val_dum,
salinity, ss_prm, ss_val_dum, t_air, sst_prm, t_skin, ref_ht_wind,
ref_ht_tq, astab, Qnet, warn, flux_model, z0_mom_prm, z0_TQ_prm,
stable_prm, pass_by_ref_params ):
'''
'main' subroutine for combined sea state and atmospheric flux model
Includes:
BVW sea state parameterization,
BVW atmospheric boundary layer (roughness length) model (optional),
Toba's 2/3 wave relation,
Monin-Obhukov atmoshpheric stability parameterization,
Godfrey and Beljaar's convective parameterization.
Options for dynamic input parameters
Most users will want to input wind speeds. However, there is a
growing need to convert scatterometer observations of stress or
equivalent neutral wind speed to winds and/or stresses.
dyn_in_prm Parameter treated as known
0 Wind speed,
1 Friction velocity,
2 Surface stress,
3 Equivalent neutral wind speed. Note 'equivalent neutral'
is NOT equivelent to 'neutral'.
Options for seastate parameterizations (or parameters):
There are three possible seastate assumptions: any one of the
following can be treated as known: wind-wave stability parameter,
phase speed, or wave age.
ss_prm Parameter treated as known
0 Wind-wave stability parameter (set to 1.0 for local
equilibrium),
1 Phase speed of the dominant waves [m/s],
2 Wave age the dominant waves (cp/ustar) [],
3 Significant Wave Height [m],
4 Significant slope [],
5 Period of the dominant waves [s],
6 Orbital velocity of dominant waves [m/s].
Options for atmospheric moisture input:
Choose the moisture parameter that is easiest for you to deal with:
air_moist_prm Parameter for moisture of air
0 Absolute humidity at the reference height of the thermometer
and humidity sensor [g vapor / g air],
1 Relative Humidity [fraction],
2 Dew point temperature [C],
3 Wet bulb temperature [C].
Options for surface moisture input:
Choose the moisture parameter that is easiest for you to deal with:
sfc_moist_prm Parameter for moisture of air
0 Absolute humidity 'at' (near) the surface [g vapor / g air],
1 Relative Humidity [fraction],
2 Dew point temperature [C],
3 Wet bulb temperature [C].
Definitions:
Input parameters (passed through call):
CON_P Convective parameter (unitless). Recammended value between
0.7 and 1.25. For details see TOGA NOTES #4.
CRIT Convergence criterion (unitless fraction).
air_moist_prm Moisture parameter index.
air_moist_val Value of the parameter corresponding to the above index.
press Atmospheric surface pressure (Pa).
s Salinity (unitless).
ss_prm Seastate parameter index.
ss_val Value of the parameter corresponding to the above index.
ta Air temperature at the reference height of the thermometer
and humidity sensor (degrees C).
u Mean wind speed (m/s) at the height (zref) of the annemometer.
u_sfc Mean surface current (m/s).
zref Height (metres) of the wind observations.
zrefq Height (metres) of the humidity observations. See zreft.
zreft Height (metres) of the temperature observations. Note: in
the current version of the code this must equal to height
of the humidity observations.
astab Option for atmospheric stability condition:
0) atmospheric stability is assumed to be neutral,
1) assumption of a neutral atmospheric stability is
not made.
theta_ang Direction of 'dynamic input' (e.g., wind or stress) relative
to the direction of propagation of the dominant waves.
Other parameters:
bstar Component of bouyancy flux (-bstar * ustar).
cmin Minimun phase speed of water waves - determined through
the phase relation [m/s].
CP Specific heat of air [J/kg].
denair density of air [kg/m^3].
denwat density of water [kg/m^3].
LV Latent heat of vaporization [J/kg].
sfcten suface tension of air-water interface [N/m].
ww Wind-wave stability parameter (unitless). Equal to one for
local equilibrium; greater than one for rising seas; less
than one (and greater than zero) for falling seas.
ww_eql Value of U(Hs)/cp for local wind-wave equilibrium (0.83).
zz wind reference height divided by momentum roughness lentgh [],
zzq moisture reference height divided by moisture roughness
lentgh [],
zzt temperature reference height divided by temperature roughness
lentgh [],
Output parameters:
cp dominant phase speed of gravity waves [m/s],
hsig significant wave height [m],
inv_monin inverse Monin-Obhukov scale length [m^-1],
lhf latent heat flux [W/m^2],
qstar scaling parameter for moisture [],
shf sensible heat flux [W/m^2],[W/m^2],
tau stress vector [N/m^2]; tau[0] is parallel the direction
of wave propagation, and tau[1] is perpendicular tau[0] in
a right handed coordinate system (with the positive
vertical axis pointing upward,
tstar scaling term for potential temperature [degrees C]
ustar friction velocity [m/s],
wa wave age, cp/ustar [],
zo_m momentum roughness lentgh (two components: parallel and
perpendicular direction of wave propagation) [],
'''
global flux_model_dum, no_capw, no_sfcten, smith88, stab_prm
global TQzo_prm, use_dh, wave_stab_intr, monin_inv
global betac_prime, betag_prime
global CP, denair, LV
global u, u_orb, wa, zz
#definitions for flux model types
# 0 BVW
# 1 Smith 1988
flux_model_dum = flux_model
smith88 = FALSE
no_capw = FALSE
wave_stab_intr = TRUE
use_dh = FALSE
no_sfcten = FALSE
if flux_model < 0:
z0_prm = z0_mom_prm
TQzo_prm = z0_TQ_prm
stab_prm = stable_prm
else:
TQzo_prm = 0
stab_prm = 0
if flux_model == 0: #BVW
z0_prm = 0
elif flux_model == 1: #Smith 1988
z0_prm = 0
ss_prm = 2
ss_val_dum = 43.64
dyn_in_val2 = 0.0
smith88 = TRUE
no_capw = TRUE
wave_stab_intr = FALSE
stab_prm = 0
elif flux_model == 2:
#BVW without interaction between waves and atmospheric stab
z0_prm = 0
wave_stab_intr = FALSE
elif flux_model == 3:
#BVW with Smith (1988) stability parameterization
z0_prm = 0
stab_prm = 1
elif flux_model == 4:
#BVW without capillary waves
z0_prm = 0
no_capw = TRUE
elif flux_model == 5:
#BVW without sfcten in phase relations
z0_prm = 0
no_sfcten = TRUE
elif flux_model == 6:
#BVW without capillary waves and without sfcten in the phase relation
z0_prm = 0
no_sfcten = TRUE
no_capw = TRUE
elif flux_model == 7:
#Taylor and Yelland (2001) roughness length
z0_prm = 2
no_sfcten = TRUE
no_capw = TRUE
elif flux_model == 8:
#Taylor and Yelland (2001) roughness length + capillary
z0_prm = 3
elif flux_model == 9:
#Bourassa 2006 friction velocity with CFC zot and zoq
z0_prm = 1
TQzo_prm = 1
elif flux_model == 10:
#case 9 with displacement height estimated within the code
z0_prm = 1
TQzo_prm = 1
use_dh = TRUE
elif flux_model == 11:
#Bourassa 2006 friction velocity with Zilitinkevich et al. zot and zoq
z0_prm = 1
TQzo_prm = 2
elif flux_model == 12:
#Bourassa 2006 friction velocity with LKB zot and zoq
z0_prm = 1
TQzo_prm = 3
elif flux_model == 13:
#Bourassa 2006 friction velocity with COARE3.0 zot and zoq
z0_prm = 1
TQzo_prm = 4
elif flux_model == 14:
#Bourassa 2006 friction velocity with wall theory for moisture
z0_prm = 1
TQzo_prm = 0
elif flux_model == 15:
#Bourassa 2006 friction velocity with CFC zot and zoq and oil spill z0m and zero LHF
z0_prm = 4
TQzo_prm = 1
else:
print('Invalid choice of flux_model parameter: '+ flux_model)
exit(1)
MS = 58.443000
# molecular mass of salt [kg/kmol]
MW = 18.016000
# molecular mass of water [kg/kmol]
betag_prime = 1.0
betac_prime = 1.0
if no_capw:
betac_prime = 0.0
betas_prime = 0.0 + float(smith88)
betas[0] = 1.0
betas[1] = 1.0
ww_eql = 0.345 / KV
CRIT = float(CONV_CRIT)
CON_P = float(CONVECT)
press = float(pressure)
air_moist_val = float(air_moist_val_dum)
sfc_moist_val = float(sfc_moist_val_dum)
s = float(salinity)
ss_val = float(ss_val_dum)
ta = float(t_air)
tskin = float(t_skin)
zref = float(ref_ht_wind)
#/* the height of the temperature sensor must be equal to the height of
#the humidity sensor. */
zrefq = float(ref_ht_tq)
zreft = zrefq
pass_by_ref_params['zo_m'][0] = 0.0001
pass_by_ref_params['zo_m'][1] = 0.0
# setup the knowns and initial gueses for the seastate.
wa[0] = 20.0 # initial guess
wa[1] = 28.0
cp = 4.0 # initial guess
fixedcp = FALSE
fixedwa = FALSE
hsig[0] = 0.01 # initial guess assumes waves exist
hsig[1] = 0.01 # initial guess assumes waves exist
fixedcp = FALSE
fixedwa = FALSE
fixed_hsig = FALSE
ww = 1.0
if ss_prm == 0:
# the wind-wave stability parameter is specified
ww = ss_val
elif ss_prm == 1:
# phase speed is known
fixedcp = TRUE
cp = ss_val
elif ss_prm == 2:
# wave age (ustar/cp) is known
fixedwa = TRUE
wa[0] = ss_val
elif ss_prm == 3:
# significant wave height is known
fixed_hsig = TRUE
hsig[0] = ss_val
elif ss_prm == 4:
# significant slope is known
pass
elif ss_prm == 5:
# period of the dominant waves is known
pass
elif ss_prm == 6:
# Orbital velocity is known
u_orb[0] = ss_val
else:
print('Invalid choice of ss_prm: '+ ss_prm)
exit(1)
# setup the atmospheric stability parameters
monin_inv = 0.0
if astab == 0:
neutral = TRUE
elif astab == 1:
neutral = FALSE
else:
print('Invalid atmospheric stability option: '+ astab)
print('Allowable options are: 0 (neutral), and 1 (non-neutral)')
exit(1)
betag_set = betag_prime
betac_set = betac_prime
betas_set = betas_prime
# determine the viscosity of air
nu = ( 1.3260000e-5 * (1.00000 + 0.006542 * ta + 8.301000E-6 * ta * ta +
4.840000E-9 * ta * ta * ta ))
# determine the surface tension
sfcten = 7.6100000E-2 - 1.55000E-4 * tskin + 2.77000E-5 * s * MS / MW
# determine the latent heat of vaporization
LV = 4186.8 * ( 597.31 - 0.56525 * tskin )
# use the atmospheric moisture parameter to determine the specific humidity [kg/kg].
qmixa = find_q_( air_moist_prm, air_moist_val, press, ta )
if qmixa == -1.0:
print('Invalid choice of air_moist_prm: '+ air_moist_prm)
# use the surface moisture parameter to determine the specific humidity [kg/kg].
qmixw = find_q_( sfc_moist_prm, sfc_moist_val, press, tskin )
if qmixw == -1.0:
print('Invalid choice of sfc_moist_prm: '+ sfc_moist_prm)
if z0_prm == 4:
qmixw = qmixa
# determine the heat capacity at constant pressure
CP = 1004.0 * ( 1.0 + 0.9 * qmixw )
# determine the density of the moist air
denair = press / (R * (ta + 273.14) * (1.00000000 + 0.6100000 * qmixa ))
# determine the density of pure water
denwat = ((999.8396 + 18.224944 * tskin - 0.007922210 * tskin * tskin ) /
( 1.0000000 + 0.018159725 * tskin ))
# determine the density of saline water
va = (( 12.97000 + 0.23400000 * tskin - 4.2100000E-3 * tskin * tskin +
2.8570000E-5 * tskin * tskin * tskin ) * 10.00000E-3 +
m.sqrt( s * denwat * 10.00000E-3 ) * 2.9820000E-3 - 4.9700000E-5 *
tskin + 6.0320000E-7 * tskin * tskin)
denwat = denwat * ( 1.0000000 + s ) / ( 1.000000 + va * denwat * s / MS )
# setup known inputs for the dynamic input (typically wind speed)
fixed_ustar = FALSE
fixed_uen = FALSE
if dyn_in_prm == 0: # wind speed is specified
# split the wind into component parallel and perpendicular to the mean
# direction of wave propagation.
u[0] = float(dyn_in_val)
u[1] = float(dyn_in_val2)
elif dyn_in_prm == 1: # friction velocity is specified
fixed_ustar = TRUE
# split the wind into component parallel and perpendicular to the mean
# direction of wave propagation.
ustar[0] = float(dyn_in_val)
ustar[1] = float(dyn_in_val2)
if ( m.fabs( ustar[0] ) < 0.00001 ):
ustar[0] = 0.00001
if ( m.fabs( ustar[1] ) < 0.00001 ):
ustar[1] = 0.00001
elif dyn_in_prm == 2: # surface stress (magnitude) is known
fixed_ustar = TRUE
# split the wind into component parallel and perpendicular to the mean
# direction of wave propagation.
ustar[0] = m.sqrt( float(dyn_in_val) / denair )
ustar[1] = m.sqrt( float(dyn_in_val2) / denair )
if ( m.fabs( ustar[0] ) < 0.00001 ):
ustar[0] = 0.00001
if ( m.fabs( ustar[1] ) < 0.00001 ):
ustar[1] = 0.00001
elif dyn_in_prm == 3: # equivalent neutral wind speed is known
fixed_uen = TRUE
# split the wind into component parallel and perpendicular to the mean
# direction of wave propagation.
u[0] = float(dyn_in_val)
u[1] = float(dyn_in_val2)
else:
print('Invalid choice of dyn_in_prm: '+ dyn_in_prm)
exit(1)
# One the first pass assume than waves exist
hsig[1] = 0.01
zz[0] = 10000.0
zz[1] = 10000.0
count = solve( fixedcp, fixedwa, fixed_hsig, fixed_uen, fixed_ustar,
neutral, CON_P, cp, CRIT, denwat, nu, qmixa, qmixw,
sfcten, ss_prm, ss_val, ta, tskin, Qnet, zref, zreft,
zrefq, ww, ww_eql, betag_set, betac_set, betas_set, z0_prm, warn )
if ( count <= 1 or ustar[0] == 10.0 or ustar[1] == 10.0 or ( wa[0] == 1.08
and betag[0] > 0.5 and flux_model != 9 ) or ( wa[0] == 250.0 and betag[0]
> 0.5 and flux_model != 9 ) or m.fabs(monin_inv) == 10.0 ):
count = -1
if ( warn ):
print( 'non-conv diags: ', count, ustar[0], ustar[1], tstar, qstar,
wa[0], monin_inv, betag[0])
if ( not warn and ( ustar[0] == 10.0 or ustar[1] == 10.0 ) ):
ustar[0] = 0.0 # usually a good approximation
ustar[1] = 0.0
print('friction velocity set to zero.')
if ( count > 1 or not warn ):
dud = m.sqrt( ustar[0] * ustar[0] + ustar[1] * ustar[1] )
pass_by_ref_params['tau'] = dict()
pass_by_ref_params['tau'][0] = float(denair * dud * ustar[0])
pass_by_ref_params['tau'][1] = float(denair * dud * ustar[1])
pass_by_ref_params['shf'] = float(-denair * CP * dud * tstar)
pass_by_ref_params['lhf'] = float(-denair * LV * dud * qstar)
pass_by_ref_params['u_star'] = dict()
pass_by_ref_params['u_star'][0] = float(ustar[0])
pass_by_ref_params['u_star'][1] = float(ustar[1])
pass_by_ref_params['t_star'] = float(tstar)
pass_by_ref_params['q_star'] = float(qstar)
pass_by_ref_params['z_over_L'] = float(not neutral) * float( zref * monin_inv )
pass_by_ref_params['wave_age'] = float(wa[0])
pass_by_ref_params['dom_phs_spd'] = float( betag[0] * cp_com )
pass_by_ref_params['h_sig'] = float( betag[0] * hsig[0] )
pass_by_ref_params['ww_stab'] = float(ww)
pass_by_ref_params['zo_m'] = dict()
pass_by_ref_params['zo_m'][0] = zref / zz[0]
pass_by_ref_params['zo_m'][1] = zref / zz[1]
else:
# printf( "Warning: non-convergence" )
pass_by_ref_params['tau'] = dict()
pass_by_ref_params['tau'][0] = -9999.0
pass_by_ref_params['tau'][1] = -9999.0
pass_by_ref_params['shf'] = -9999.0
pass_by_ref_params['lhf'] = -9999.0
pass_by_ref_params['u_star'] = dict()
pass_by_ref_params['u_star'][0] = float(ustar[0])
pass_by_ref_params['u_star'][1] = float(ustar[1])
pass_by_ref_params['t_star'] = float(tstar)
pass_by_ref_params['q_star'] = float(qstar)
pass_by_ref_params['z_over_L'] = float( zref * monin_inv )
pass_by_ref_params['wave_age'] = float(wa[0])
pass_by_ref_params['dom_phs_spd'] = float(cp_com)
pass_by_ref_params['h_sig'] = float(hsig[0])
pass_by_ref_params['ww_stab'] = float(ww)
pass_by_ref_params['zo_m'] = dict()
pass_by_ref_params['zo_m'][0] = -9999.0
pass_by_ref_params['zo_m'][1] = -9999.0
return count
def find_q_( moist_prm, moist_val, press, temperature ):
# printf( "Bq%i %f %f %f\n", moist_prm, moist_val, press, temperature )
# use the atmospheric moisture parameter to determine the specific humidity [kg/kg].
if ( moist_prm == 0 ): # input is specific humidity
spec_hum = moist_val
elif ( moist_prm == 1 ): # relative humidity (fraction) is used as input
# determine saturation vapour pressure over a smooth surface of water, at the temperature
satvp = ( ( 1.000700 + 3.460000E-8 * press ) * 611.2100 *
m.exp( 17.50200 * temperature / ( 240.97000 + temperature ) ) )
spec_hum = ( moist_val * satvp * 0.6220 / ( press - 0.3780 * moist_val * satvp ) )
elif ( moist_prm == 2 ): # dew point temperature is used as input
# determine the latent heat of vaporization
satvp = ( ( 1.000700 + 3.460000E-8 * press ) * 611.2100 *
m.exp( 17.50200 * moist_val / ( 240.97000 + moist_val ) ) )
spec_hum = ( 0.6220 * satvp / ( press - 0.3780 * satvp ) )
elif ( moist_prm == 3 ): # wet bulb temperature is used as input
spec_hum = ( 0.0000066 * ( 1.0 + 0.00115 * moist_val ) ) # dummy use of spec_hum
satvp = ( (1.000700 + 3.460000E-8 * press) * 611.2100 *
m.exp( 17.50200 * moist_val / ( 240.97000 + moist_val ) ) -
spec_hum * press * (temperature - moist_val ) )
spec_hum = 0.6220 * satvp / ( press - 0.3780 * satvp )
else:
print ( 'Invalid choice of moist_prm: ', moist_prm )
spec_hum = -1.0
return spec_hum
def ht_adj_( dyn_in_prm, dyn_in_val, dyn_in_val2, CONVECT, CONV_CRIT,
pressure, air_moist_prm, air_moist_val, sfc_moist_prm, sfc_moist_val,
salinity, ss_prm, ss_val, t_air, sst_prm, t_skin, ref_ht_wind, ref_ht_tq,
z_wanted, astab, eqv_neut_prm, Qnet, warn, flux_model, z0_mom_prm,
z0_TQ_prm, stable_prm, pass_by_ref_params):
global flux_model_dum, no_capw, TQzo_prm, CP, denair
global ustar, zzq, zzt
zoN = [None]*2
TQzo_prm = 0
# The physics breaks down for zero wind speed. If the wind speed is zero, make an adjustment
zero_speed_flag = FALSE
if ( dyn_in_val == 0.0 and dyn_in_val2 == 0.0 ):
zero_speed_flag = TRUE
dyn_in_val = 0.001
if ( flux_model == 9 or flux_model == 10 ):
TQzo_prm = 1
if ( eqv_neut_prm == 2 ):
eqv_neut = FALSE
elif ( eqv_neut_prm == 1 ):
eqv_neut = TRUE
else:
eqv_neut = FALSE
# calculate neutral roughness length
astab_temp = 0
bvw_flag = pmix_( dyn_in_prm, dyn_in_val, dyn_in_val2, CONVECT, CONV_CRIT,
pressure, air_moist_prm, air_moist_val, sfc_moist_prm, sfc_moist_val,
salinity, ss_prm, ss_val, t_air, sst_prm, t_skin, ref_ht_wind, ref_ht_tq,
astab, Qnet, warn, flux_model, z0_mom_prm, z0_TQ_prm, stable_prm,
pass_by_ref_params )
# record neutral roughness length
zoN[0] = pass_by_ref_params['zo_m'][0]
zoN[1] = pass_by_ref_params['zo_m'][1]
# calculate fluxes and height adjustment for non-neutral (or specified) conditions
bvw_flag = pmix_( dyn_in_prm, dyn_in_val, dyn_in_val2, CONVECT, CONV_CRIT,
pressure, air_moist_prm, air_moist_val, sfc_moist_prm, sfc_moist_val,
salinity, ss_prm, ss_val, t_air, sst_prm, t_skin, ref_ht_wind, ref_ht_tq,
astab, Qnet, warn, flux_model, z0_mom_prm, z0_TQ_prm, stable_prm,
pass_by_ref_params )
# LV = 4186.8 * ( 597.31 - 0.56525 * t_skin )
q_sfc = find_q_( sfc_moist_prm, sfc_moist_val, pressure, t_skin )
# determine the heat capacity at constant pressure
CP = 1004.0 * ( 1.0 + 0.9 * q_sfc )
alpha = 1.0/(t_skin+273.15)
# correct to the height of z_wanted
if ( eqv_neut_prm == 0 ):
phi_u = phi_u_f( z_wanted, z_wanted / pass_by_ref_params['zo_m'][0] )
nu = 1.3260000e-5 * (1.00000 + 0.006542 * t_skin +
8.301000E-6 * t_skin * t_skin + 4.840000E-9 * t_skin * t_skin * t_skin )
ustar_mag = m.sqrt( ustar[0]*ustar[0] + ustar[1] * ustar[1] )
zo_mag = m.sqrt( pass_by_ref_params['zo_m'][0]* pass_by_ref_params['zo_m'][0] + pass_by_ref_params['zo_m'][1] * pass_by_ref_params['zo_m'][1] )
# the following 6 lines seem unnecessary
viscosity = 1.4e-5
denair = pressure / (R * ( t_skin + 273.14) * (1.0 + 0.61 * q_sfc ) )
renewalTime = getRenewalTime( zo_mag, ustar_mag, denair, CP, alpha,
Qnet, viscosity )
Stanton = getStanton( ustar_mag, renewalTime)
Dalton = getDalton( ustar_mag, renewalTime)
zzt = zzt * z_wanted / ref_ht_tq
zzq = zzq * z_wanted / ref_ht_tq
phi_T = phi_T_f( z_wanted, zzt )
phi_Q = phi_Q_f( z_wanted, zzq )
elif ( eqv_neut_prm == 1 ):
# Tang and Liu eqv neut winds
phi_u = 0.0
phi_T = 0.0
phi_Q = 0.0
elif ( eqv_neut_prm == 2 ):
# if option was selected, calculate equivalent friction velocities as
# defined by Geernaert and Katsaros (1986)
pass_by_ref_params['ustar'][0] = pow( dyn_in_val / ustar[0] + phi_u / KV -
log( zoN[0] / pass_by_ref_params['zo_m'][0] ) / KV, -1.0 ) * dyn_in_val
pass_by_ref_params['ustar'][1] = pow( dyn_in_val2 / ustar[1] + phi_u / KV -
log( zoN[1] / pass_by_ref_params['zo_m'][1] ) / KV, -1.0 ) * dyn_in_val2
phi_u = 0.0
pass_by_ref_params['z_over_L'] = pass_by_ref_params['z_over_L'] * z_wanted / ref_ht_wind
if ( zero_speed_flag == FALSE and pass_by_ref_params['zo_m'][0] > 0.0 ):
pass_by_ref_params['u_at_z'] = m.sqrt( pow(ustar[0] * ( m.log( z_wanted / pass_by_ref_params['zo_m'][0] ) + phi_u ) / KV, 2.0) +
pow(ustar[1] * ( m.log( z_wanted / pass_by_ref_params['zo_m'][1] ) + phi_u ) / KV, 2.0) )
else:
pass_by_ref_params['u_at_z'] = 0.0
pass_by_ref_params['t_at_z'] = t_skin + Prt * tstar * ( m.log( zzt ) + phi_T ) / KV
pass_by_ref_params['q_at_z'] = q_sfc + Sc * qstar * ( m.log( zzq ) + phi_Q ) / KV
return( bvw_flag )
###END CENTRY###
def f_bstar( neutral, qmixa, ta, minimum_value ):
bstar = (float(not neutral) * G * ( ( 1.00 + 0.610 * qmixa ) * tstar + 0.6100 *
( ta + 273.15 ) * qstar ) / ( ta + 273.15 * ( 1.0 + 0.610 * qmixa ) ))
if ( m.fabs( bstar ) < minimum_value ):
if ( bstar == 0.0 ):
bstar = minimum_value
else:
bstar = minimum_value * bstar / m.fabs( bstar )
return bstar
# # # # # solve # # # # #
def solve( fixedcp, fixedwa, fixed_hsig, fixed_uen, fixed_ustar, neutral,
CON_P, cp, CRIT, denwat, nu, qmixa, qmixw, sfcten, ss_prm, ss_val,
ta, tskin, Qnet, zref, zreft, zrefq, ww, ww_eql, betag_set, betac_set,
betas_set, z0_prm, warn ):
global betac_prime, betag, betac, betas, betag_prime, betas_prime
global cmin, monin_inv, qstar, tstar
global zzq, zzt
# convert the temperatures to equivalent potential temperature
# estimated through the dry static energy
ustar_old = [None] * 2
wa_old = [None] * 2
zz_old = [None] * 2
tskin_ept = tskin
ta_ept = ta + G * zreft / CP
betag_prime = betag_set
betag[0] = betag_prime
betag[1] = betag_prime
betac_prime = betac_set
betac[0] = betac_prime
betac[1] = betac_prime
betas_prime = betas_set
betas[0] = betas_prime
betas[1] = betas_prime
# intial guess for value of friction velocity (ustar)
# component parallel direction of wave motion
ustar[0] = ( float(fixed_ustar) * ustar[0] +
float(not fixed_ustar) * 0.003 )
# component perpendicular direction of wave motion
ustar[1] = ( float(fixed_ustar) * ustar[1] +
float(not fixed_ustar) * 0.003 )
tstar = 0.0003 * (ta - tskin)
if ( m.fabs( tstar ) < 0.001 ):
tstar = -0.001
qstar = 0.0003 * (qmixa - qmixw)
if ( m.fabs( qstar ) < 0.0001 ):
qstar = -0.0001
ustar_old[0] = ustar[0] / 2.00
ustar_old[1] = ustar[1] / 2.00
tstar_old = tstar / 2.00
qstar_old = qstar / 2.00
cmin = m.sqrt( 2.0 * m.sqrt( G * sfcten / denwat ) )
u_sfc[0] = 0.0
u_sfc[1] = 0.0
if ( ss_prm != 6 ):
u_orb[0] = 0.0
else:
u_orb[0] = ss_val
u_orb[1] = 0.0
# initially assume a neutral atmospheric stability (monin_inv = 0)
monin_inv = 0.0
unreasonable = TRUE
while ( unreasonable == TRUE ):
# iterate over atmospheric stability and friction velocity
monin_inv_old2 = -0.001
ustar_mag_old = 0.0
ustar_mag = m.sqrt( ustar[0] * ustar[0] + ustar[1] * ustar[1] )
count_Lu = 0
while ( ( m.fabs( monin_inv - monin_inv_old2 ) > CRIT*m.fabs( monin_inv_old2 ) or
m.fabs( ustar_mag - ustar_mag_old ) > CRIT * m.fabs( ustar_mag_old ) or
count_Lu < 2 ) and count_Lu < 30 and not ( fixed_ustar and count_Lu >= 1 ) ):
count_Lu = count_Lu + 1
# determine roughness lengths for heat and moisture profiles
viscosity = 1.4e-5
alpha = 1.0/(ta+273.15)
zo_mag = zref / m.sqrt( zz[0] * zz[0] + zz[1] * zz[1] )
# zo_mag = zref / zz[0] # test option
renewalTime = getRenewalTime( zo_mag, ustar_mag, denair, CP, alpha,
Qnet, viscosity )
Stanton = getStanton( ustar_mag, renewalTime)
Dalton = getDalton( ustar_mag, renewalTime)
zzt = z_o_zt( zref, zreft, nu, zo_mag, Stanton )
zzq = z_o_zq( zref, zrefq, nu, zo_mag, Dalton )
ustar_mag_old = ustar_mag
monin_inv_old2 = monin_inv
# iterate over solutions to tstar, qstar, and monin_inv
tstar_old = 0.5 * tstar
qstar_old = 0.5 * qstar
monin_inv_old = monin_inv
count_tqL = 0
while ( ( m.fabs( tstar - tstar_old ) > CRIT * m.fabs( tstar_old ) or
m.fabs( qstar - qstar_old ) > CRIT * m.fabs( qstar_old ) or
m.fabs( monin_inv - monin_inv_old ) > 0.1*CRIT * m.fabs( monin_inv_old )
or count_tqL < 3 ) and count_tqL < 40 ):
count_tqL = count_tqL + 1
tstar_old = tstar
qstar_old = qstar
monin_inv_old = monin_inv
# determine tstar (assuming the current L is correct)
# print( "test2a: %f %f %f\n", (float)tstar, (float)qstar, (float)monin_inv );
# print( "test2c: %f %f %f %f %f\n", (float)delta_theta, (float)KV,
# (float)( log( zzt+1.0 ), (float)(!neutral) * phi_T ), (float)Prt )
if ( ta_ept == tskin_ept ):
tstar = 0.0
else:
# determine the eqv. pot. temperature stability term
phi_T = phi_T_f( zreft, zzt )
delta_theta = ta_ept - tskin_ept
if ( m.fabs( delta_theta ) < 0.001 ):
delta_theta = -0.001
tstar = ( KV * delta_theta / ( m.log( zzt+1.0 ) +
float(not neutral) * phi_T ) / Prt )
# determine qstar (assuming current L is correct
# printf( "test2b: %f %f %f\n", (float)tstar, (float)qstar, (float)monin_inv );
if ( qmixa == qmixw ):
qstar = 0
else:
# determine the moisture stability term */
phi_Q = phi_Q_f( zreft, zzq )
delta_q = qmixa - qmixw
if ( m.fabs( delta_q ) < 0.0001 ):
delta_q = -0.0001
qstar = ( KV * ( delta_q ) / ( m.log( zzq+1.0 ) +
float(not neutral) * phi_Q ) / Sc )
# printf( "%f %f %f\n", delta_q, zzq, phi_Q )
# determine the bouyancy flux
bstar = f_bstar( neutral, qmixa, ta, 0.000001 )
# !!!!This assumes temperature and humidity are measured at THE SAME HEIGHT
# determine the inverse Monin-Obhukov scale length: 1/L
monin_inv = KV * bstar / ( ustar[0]*ustar[0] + ustar[1] * ustar[1] )
# insure that 1/L is within reasonable bounds
max = 1.0
min = 0.0001
if ( m.fabs(monin_inv) < min ):
monin_inv = min * monin_inv / m.fabs( monin_inv )
if ( m.fabs( monin_inv ) > max ):
monin_inv = max * monin_inv / m.fabs( monin_inv )
# end of iteration on tstar, qstar, and monin_inv
# printf( "test3: %f %f %f\n", (float)tstar, (float)qstar, (float)monin_inv )
done = FALSE
count = 0
while ( ( done == FALSE or count < 2 ) and count < 100 ):
count = count + 1
done = TRUE
wa_old[0] = wa[0]
wa_old[1] = wa[1]
zz_old[0] = zz[0]
zz_old[1] = zz[1]
first = TRUE
# iteratively solve for u* for non-neutral conditions
if ( not fixed_ustar ):
find_ustar( first, fixedcp, fixedwa, fixed_hsig, fixed_uen,
neutral, count, CON_P, cp, CRIT, denwat, nu, qmixa, sfcten, ta,
ww, ww_eql, ss_prm, ss_val, zref, zreft, z0_prm )
# printf( "test A %f %f %f %f\n", (float)ustar[0], (float)ustar[1],
# (float)tstar, (float)qstar )
else:
i = 0
if ( fixed_hsig and i == 0 ):
hsig_known = TRUE
else:
hsig_known = FALSE
trouble = z_o_z0( fixedcp, fixedwa, neutral, hsig_known,
denwat, nu, sfcten, zref, cp, ww, ww_eql,
ss_prm, ss_val, count, i, z0_prm )
i = 1
hsig_known = FALSE
trouble = z_o_z0( fixedcp, fixedwa, neutral, hsig_known,
denwat, nu, sfcten, zref, cp, ww, ww_eql,
ss_prm, ss_val, count, i, z0_prm )
if ( ( m.fabs( ( wa[0] - wa_old[0]) / wa[0] ) > CRIT or
m.fabs( ( wa[1] - wa_old[1] ) / wa[1] ) > CRIT or
m.fabs( ( zz[0] - zz_old[0] ) / zz[0] ) > CRIT or
m.fabs( ( zz[1] - zz_old[1] ) / zz[1] ) > CRIT ) and count < 60 ):
done = FALSE
ustar_mag = m.sqrt( ustar[0] * ustar[0] + ustar[1] * ustar[1] )
# end of iteration over friction velocity and atmospheric stability
# determine if the phase speed of the dominant waves is physically
# reasonable. If the phase speed is less than the physical minimum,
# then assume that no capillary waves are pressent. After the second
# pass, if phase speed is still unacceptable then assume the surface
# is smooth.
# if ( smith88 && monin_inv > 0 ) printf( "zo = %f %f\n", zref / zz[0], u[0] )
# if ( smith88 && monin_inv > 0 ) printf( "1 %f %f %f %f %f %f %f\n", u[0],
# betas_prime, betac_prime, betag_prime, betas[0], betac[0], betag[0])
if ( fixedwa or fixedcp or ( betag[0] != 0.0 and
wa[0] * m.fabs( ustar[0] ) > cmin ) or ( betag[1] != 0.0 and
wa[1] * m.fabs( ustar[1] ) > cmin ) or betas_prime == 1.0 ):
unreasonable = FALSE
else:
if ( betag[0] != 0.0 and betag[1] != 0.0 and betac_prime != 0.0 ):
if ( m.fabs( u[0] - u_sfc[0] ) > m.fabs( u[1] - u_sfc[1] ) ):
betag[1] = 0.0
else:
betag[0] = 0.0
elif ( betac_prime > 0.0 ):
betag[0] = 1.0
betag[1] = 1.0
betac_prime = 0.0
else:
if ( betag[0] > 0.0 and wa[0] * m.fabs( ustar[0] ) < cmin ):
betag[0] = 0.0 + float(smith88)
if ( betag[1] > 0.0 and wa[1] * m.fabs( ustar[1] ) < cmin ):
betag[1] = 0.0 + float(smith88)
if ( betag[0] == 0.0 and betag[1] == 0.0 ):
betag_prime = 0.0 + float(smith88)
betas_prime = 1.0
# if ( smith88 && monin_inv > 0 ) printf( "2 %f %f %f %f %f %f %f\n", u[0], betas_prime,
# betac_prime, betag_prime, betas[0], betac[0], betag[0])
return count_Lu + fixed_ustar
# # # # # f_ustar # # # # #
def f_ustar( fixed_uen, neutral, bstar, CON_P, phi_u, delta_u, ww, zref, max_value, i ):
global wstar2
# The effect of the surface current is considered in "delta_u":
# delta_u = U(zref) - Usfc
# This slightly reduces the speed of the algorithm.
wstar2 = ( pow( m.fabs( m.sqrt( ustar[0] * ustar[0] + ustar[1] * ustar[1] )
* bstar ) * H, 0.6666667) )
if( monin_inv >= 0.0 ):
wstar2 = 0.0
hzzg = zz[i] # in this case hzzg is not related to wave height - it is a dummy variable
if( hzzg < 0.00001 ):
hzzg = 0.00001
if( m.fabs( delta_u ) < 0.000001 ):
ustar_test = 0.0
elif( m.log( hzzg + 1.0 ) + float(not fixed_uen) * float(not neutral) * phi_u > 0.01 ):
delta_u2 = delta_u * delta_u + CON_P * wstar2
if( m.fabs( delta_u2 ) < 0.000001 ):
delta_u2 = 0.000001
delta_u = m.sqrt( delta_u2 ) * delta_u / m.fabs( delta_u )
# calculate displacement height, multiplied by zero or one depending on
# whether or not it is used.
d_over_zo = float(use_dh) * hzzg / zref * hsig[0] * 0.8
ustar_test = ( KV * delta_u / ( m.log( hzzg - d_over_zo + 1.0 ) +
float(not fixed_uen) * float(not neutral) * phi_u ) )
# eliminate the problem of excessive stress: limit friction velocity
if ( pow( KV / m.log( ( 10.0 - d_over_zo ) * zz[i] / zref + 1.0), 2.0 ) > 0.01 ):
ustar_test = ( 0.01 * pow( m.log( ( 10.0 - d_over_zo ) * zz[i] / zref + 1.0)
/ KV, 2.0 ) )
if ( ustar_test > 10.0 ):
ustar_test = 10.0
else:
ustar_test = 10.0
# ustar is not returned because it is a global variable
return ustar_test
# # # # # phi_u_f # # # # #
def phi_u_f( zref, zzd ):
a_bh = 0.7
b_bh = 0.75
c_bh = 5.0
d_bh = 0.35
# unstable case
if ( monin_inv < 0 ):
if( stab_prm == 0 ):
# BVW
# find zeta( z / L ) and zeta( zo / L )
if zzd < 0.0001:
zzd = 0.0001
zeta = pow( 1.000 - 15.000 * zref * monin_inv, 0.2500 )
zeta0 = pow( 1.000 - 15.000 * zref / zzd * monin_inv, 0.2500 )
phi_u = m.log(( (zeta0 * zeta0 + 1.0 ) * pow( zeta0 + 1.0, 2.0 ) /
( ( zeta * zeta + 1.0 ) * pow( zeta + 1.0, 2.0 ) ) ) +
2.000000 * ( m.atan(zeta) - m.atan(zeta0) ))
elif(stab_prm == 1): # Smith 88 parameterization */
a_bh = m.sqrt( m.sqrt( 1.0 - 16.0 * zref * monin_inv ) )
phi_u = (-2.0 * m.log( 0.5 * (1.0 + a_bh) ) -
m.log( 0.5 * (1.0 + a_bh*a_bh) ) + 2.0 *
m.atan( a_bh ) - 3.14159 / 2.0)
else:
# stable case */
if ( stab_prm == 0):
# BVW
phi_u =( a_bh * zref * monin_inv +
b_bh * ( zref * monin_inv - c_bh / d_bh ) *
m.exp(-d_bh * zref * monin_inv ) + b_bh * c_bh / d_bh)
elif (stab_prm == 1): # Smith 88 parameterization
phi_u = 5.0 * zref * monin_inv
return phi_u
# # # # # phi_Q_f # # # # #
def phi_Q_f( zrefq, zzq ):
#double a_bh, b_bh, c_bh, d_bh, phi_Q, qlamda, q0lamda;
a_bh = 1.0
b_bh = 0.667
c_bh = 5.0
d_bh = 0.35
if ( monin_inv < 0 ):
if( stab_prm == 0):
# BVW
# find zeta( z / L ) and zeta( zo / L )
qlamda = m.sqrt( 1.000 - 9.000 * zrefq * monin_inv )
q0lamda = m.sqrt( 1.000 - 9.000 * zrefq / zzq * monin_inv )
phi_Q = 2.0000 * m.log( ( q0lamda + 1 ) / ( qlamda + 1 ) )
elif( stab_prm == 1): # Smith 88 parameterization
a_bh = m.sqrt( 1.0 - 16.0 * zrefq * monin_inv )
phi_Q = -2.0 * m.log( ( 1.0 + a_bh ) / 2.0 )
else:
# stable case
if (stab_prm == 0): # BVW
phi_Q = (pow( 1.0 + 0.6667 * a_bh * zrefq * monin_inv, 1.5 ) +
b_bh * ( zrefq * monin_inv - c_bh / d_bh ) *
m.exp(-d_bh * zrefq * monin_inv ) + b_bh * c_bh / d_bh - 1.0)
elif(stab_prm == 1): # Smith 88 parameterization
phi_Q = 5.0 * zrefq * monin_inv
return phi_Q
# # # # # phi_T_f # # # # #
def phi_T_f( zreft, zzt ):
a_bh = 1.0
b_bh = 0.667
c_bh = 5.0
d_bh = 0.35
if ( monin_inv < 0 ):
if (stab_prm == 0): # BVW
# find zeta( z / L ) and zeta( zo / L ) */
tlamda = pow( 1.000 - 9.000 * zreft * monin_inv, 0.500)
t0lamda = pow( 1.000 - 9.000 * zreft / zzt * monin_inv, 0.500)
phi_T = 2.0000 * m.log( ( t0lamda + 1 ) / ( tlamda + 1 ) )