-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBayesianCruiseController.py
205 lines (166 loc) · 6.68 KB
/
BayesianCruiseController.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 16 14:45:19 2018
Simplified code for passive tracker, chapter 4
@author: manuelbaltieri
"""
import numpy as np
import matplotlib.pyplot as plt
import scipy.linalg as splin
### define font size for plots ###
#
SMALL_SIZE = 24
MEDIUM_SIZE = 27
BIGGER_SIZE = 30
plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes
plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=SMALL_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
#
dt = .05
T = 10
iterations = int(T / dt)
plt.close('all')
alpha = 1
def cruiseControlSimple(simulation, precision_strength):
gamma_w = 2
pi_w = np.exp(gamma_w)
sigma_w = np.sqrt(1/pi_w)
gamma_z = 1*np.array([[1, 0], [0, 1]])
pi_z = np.exp(gamma_z)
pi_z = np.diag(np.diag(pi_z))
sigma_z = np.linalg.inv(splin.sqrtm(pi_z))
w = np.random.randn(iterations, 1) * sigma_w
z = np.dot(np.random.randn(iterations, 2), sigma_z)
x = np.zeros((iterations, 2))
x[0,0] = 20.0
if simulation == 0 or simulation == 2:
mu_gamma_w = -12
elif simulation == 1 or simulation == 3:
mu_gamma_w = 2
mu_pi_w = np.exp(mu_gamma_w)
if simulation == 0:
if precision_strength == 0:
mu_gamma_z = 3*np.array([[1, 0], [0, 1]])
elif precision_strength == 1:
mu_gamma_z = 1*np.array([[1, 0], [0, 1]])
elif precision_strength == 2:
mu_gamma_z = 0*np.array([[1, 0], [0, 1]])
if simulation == 2:
mu_gamma_z = 1*np.array([[1, 0], [0, 1]])
elif simulation == 1 or simulation == 3:
mu_gamma_z = -12*np.array([[1, 0], [0, 1]])
mu_pi_z = np.exp(mu_gamma_z)
mu_pi_z = np.diag(np.diag(mu_pi_z))
psi = np.zeros((iterations, 2))
a = np.zeros((iterations, 1))
mu_x = np.zeros((iterations, 2))
# mu_v = np.zeros((iterations, 2))
mu_v = 10*np.ones((iterations, 2))
xi_z = np.zeros((iterations, 2))
xi_w = np.zeros((iterations, 1))
F = np.zeros((iterations, 1))
if simulation == 3:
k_a = np.exp(15)
else:
k_a = 1.
for i in range(iterations-1):
x[i, 1] = - alpha * x[i, 0] + a[i] + w[i]
x[i+1, 0] = x[i, 0] + dt * (- alpha * x[i, 0] + a[i] + w[i]/np.sqrt(dt))
psi[i, :] = x[i, :] + z[i, :]
# perception
dFdmu_x = np.array([[-mu_pi_z[0,0]*(psi[i,0]-mu_x[i,0]) + mu_pi_w*alpha*(mu_x[i,1]+alpha*mu_x[i,0]-mu_v[i,0]),
-mu_pi_z[1,1]*(psi[i,1]-mu_x[i,1]) + mu_pi_w*(mu_x[i,1]+alpha*mu_x[i,0]-mu_v[i,0])]])
Dmu_x = np.array([[mu_x[i,1], 0]])
mu_x[i+1, :] = mu_x[i, :] + dt * (Dmu_x - dFdmu_x)
# action
if simulation > 1:
dFda = mu_pi_z[0,0]*(psi[i,0]-mu_x[i,0]) + mu_pi_z[1,1]*(psi[i,1]-mu_x[i,1])
a[i+1] = a[i] + dt * k_a * - dFda
# weighted predictions errors
xi_z[i, :] = np.dot(psi[i,:]-mu_x[i,:], mu_pi_z)
xi_w[i] = mu_pi_w*(mu_x[i,1]+alpha*mu_x[i,0]-mu_v[i,0])
F[i] = .5 * (np.dot(np.dot(xi_z[i, :], mu_pi_z), xi_z[i, :].transpose()) + xi_w[i]*mu_pi_w*xi_w[i] - np.log(mu_pi_z[0,0]*mu_pi_z[0,0]*mu_pi_w))
v_des = mu_v[0,0]
return psi, x, a, mu_x, xi_z, xi_w, F, v_des
# simulations:
# 0: passive tracker
# 0: strong sensory expected precision
# 1: intermediate sensory expected precision
# 2: weak sensory expected precision
# 1: passive dreamer
# 2: active tracker
# 3: active dreamer
simulation = 1
precision_strength = 1 # only simulation 0
psi, x, a, mu_x, xi_z, xi_w, F, v_des = cruiseControlSimple(simulation, precision_strength)
plt.figure(figsize=(10, 7))
plt.title('Block velocity')
# plt.plot(np.arange(0, T-dt, dt), psi[:-1, 0], 'k', linestyle='-.', label='Observed velocity')
# plt.plot(np.arange(0, T-dt, dt), x[:-1, 0], 'k', linestyle='--', label='Real velocity')
# plt.plot(np.arange(0, T-dt, dt), mu_x[:-1, 0], 'k', linestyle=':', label='Estimated velocity')
plt.plot(np.arange(0, T-dt, dt), psi[:-1, 0], 'b', label='Observed velocity')
plt.plot(np.arange(0, T-dt, dt), x[:-1, 0], 'k', label='Real velocity')
plt.plot(np.arange(0, T-dt, dt), mu_x[:-1, 0], 'r', label='Estimated velocity')
plt.axhline(y=v_des, color='k', linestyle='--', linewidth=3, label='Desired velocity')
plt.xlim(0, T)
plt.ylim(-20., 35.)
plt.xlabel('Time ($s$)')
plt.ylabel('Velocity ($m/s$)')
plt.legend(loc=1)
plt.savefig("figures/cruiseControlActiveInferenceVelocity.pdf")
plt.figure(figsize=(10, 7))
plt.title('Block acceleration')
plt.plot(np.arange(0, T-dt, dt), psi[:-1, 1], 'b', label='Observed acceleration')
plt.plot(np.arange(0, T-dt, dt), x[:-1, 1], 'k', label='Real acceleration')
plt.plot(np.arange(0, T-dt, dt), mu_x[:-1, 1], 'r', label='Estimated acceleration')
plt.xlim(0, T)
plt.ylim(-20., 10.)
plt.xlabel('Time ($s$)')
plt.ylabel('Acceleration ($m/s^2$)')
plt.legend(loc=4)
plt.savefig("figures/cruiseControlActiveInferenceAcceleration.pdf")
plt.figure(figsize=(10, 7))
plt.title('(Weighted) Sensory pred. error \n on velocity')
plt.plot(np.arange(0, T-dt, dt), xi_z[:-1, 0])
plt.xlim(0, T)
plt.xlabel('Time ($s$)')
plt.ylabel('a.u.')
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
plt.savefig("figures/cruiseControlActiveInferenceSensoryPEVelocity.pdf")
plt.figure(figsize=(10, 7))
plt.title('(Weighted) Sensory pred. error \n on acceleration')
plt.plot(np.arange(0, T-dt, dt), xi_z[:-1, 1])
plt.xlim(0, T)
plt.xlabel('Time ($s$)')
plt.ylabel('a.u.')
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
plt.savefig("figures/cruiseControlActiveInferenceSensoryPEAcceleration.pdf")
plt.figure(figsize=(10, 7))
plt.title('(Weighted) \n System pred. error')
plt.plot(np.arange(0, T-dt, dt), xi_w[:-1])
plt.xlim(0, T)
plt.xlabel('Time ($s$)')
plt.ylabel('a.u.')
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
plt.savefig("figures/cruiseControlActiveInferenceDynamicPE.pdf")
plt.figure(figsize=(10, 7))
plt.title('Variational free energy')
plt.semilogy(np.arange(0, T-dt, dt), F[:-1])
plt.xlim(0, T)
plt.xlabel('Time ($s$)')
plt.ylabel('a.u.')
plt.savefig("figures/cruiseControlActiveInferenceFE.pdf")
plt.figure(figsize=(10, 7))
plt.title('Action')
plt.plot(np.arange(0, T-dt, dt), a[:-1])
plt.xlim(0, T)
plt.xlabel('Time ($s$)')
plt.ylabel('Acceleration ($m/s^2$)')
plt.savefig("figures/cruiseControlActiveInferenceAction.pdf")
plt.show()
input("Press [enter] to continue.")