|
| 1 | +is_in <- function(x, l, u){ |
| 2 | + below <- x >= l |
| 3 | + above <- x <= u |
| 4 | + result <- as.logical(below * above) |
| 5 | + return(result) |
| 6 | +} |
| 7 | + |
| 8 | +gera_dados <- function(n, theta){ |
| 9 | + X <- rexp(n = n, rate = theta) |
| 10 | + return(X) |
| 11 | +} |
| 12 | + |
| 13 | +computa_emv <- function(x){ |
| 14 | + theta.chapeu <- 1/mean(x) |
| 15 | + return(theta.chapeu) |
| 16 | +} |
| 17 | + |
| 18 | +intervalos_emv <- function(x, alpha = 0.95){ |
| 19 | + n <- length(x) |
| 20 | + S <- sum(x) |
| 21 | + theta.chapeu <- computa_emv(x) |
| 22 | + ## |
| 23 | + ZchiL <- qchisq(p = (1-alpha)/2, df = 2*n) |
| 24 | + ZchiU <- qchisq(p = (1+alpha)/2, df = 2*n) |
| 25 | + ## |
| 26 | + Znorm <- qnorm(p = (1+alpha)/2) |
| 27 | + D <- Znorm*sqrt(theta.chapeu^2/n) |
| 28 | + ## |
| 29 | + resultado <- tibble::tibble( |
| 30 | + point = c(theta.chapeu, theta.chapeu), |
| 31 | + lwr = c(ZchiL/(2*S), theta.chapeu-D), |
| 32 | + upr = c(ZchiU/(2*S), theta.chapeu+D), |
| 33 | + method = c("exact", "asymptotic") |
| 34 | + ) |
| 35 | + return(resultado) |
| 36 | +} |
| 37 | + |
| 38 | +NP_boot <- function(x, B, alpha = 0.95){ |
| 39 | + n <- length(x) |
| 40 | + resample <- matrix(NA, nrow = B, ncol = n) |
| 41 | + for(i in 1:B){ |
| 42 | + resample[i, ] <- x[sample(seq_along(x), n, replace = TRUE)] |
| 43 | + } |
| 44 | + thetas.chapeus <- apply(resample, 1, computa_emv) |
| 45 | + |
| 46 | + out <- list( |
| 47 | + lwr = quantile(thetas.chapeus, probs = (1-alpha)/2), |
| 48 | + mean = mean(thetas.chapeus), |
| 49 | + upr = quantile(thetas.chapeus, probs = (1+alpha)/2) |
| 50 | + ) |
| 51 | + return(out) |
| 52 | +} |
| 53 | + |
| 54 | +P_boot <- function(x, B, alpha = 0.95){ |
| 55 | + n <- length(x) |
| 56 | + theta_star <- computa_emv(x) |
| 57 | + resample <- matrix(NA, nrow = B, ncol = n) |
| 58 | + for(i in 1:B){ |
| 59 | + resample[i, ] <- rexp(n = n, rate = theta_star) |
| 60 | + } |
| 61 | + thetas.chapeus <- apply(resample, 1, computa_emv) |
| 62 | + |
| 63 | + out <- list( |
| 64 | + lwr = quantile(thetas.chapeus, probs = (1-alpha)/2), |
| 65 | + mean = mean(thetas.chapeus), |
| 66 | + upr = quantile(thetas.chapeus, probs = (1+alpha)/2) |
| 67 | + ) |
| 68 | + return(out) |
| 69 | +} |
| 70 | + |
| 71 | +intervalos_bootstrap <- function(x, B, alpha = 0.95){ |
| 72 | + |
| 73 | + NP.res <- NP_boot(x = x, B = B, alpha = alpha) |
| 74 | + P.res <- P_boot(x = x, B = B, alpha = alpha) |
| 75 | + |
| 76 | + resultado <- tibble::tibble( |
| 77 | + point = c(NP.res$mean, P.res$mean), |
| 78 | + lwr = c(NP.res$lwr, P.res$lwr), |
| 79 | + upr = c(NP.res$upr, P.res$upr), |
| 80 | + method = c("non_parametric", "parametric") |
| 81 | + ) |
| 82 | + return(resultado) |
| 83 | +} |
| 84 | + |
| 85 | +gera_e_estima <- function(n, theta, B, alpha = 0.95){ |
| 86 | + dados <- gera_dados(n = n, theta = theta) |
| 87 | + est1 <- intervalos_emv(dados, alpha = alpha) |
| 88 | + est2 <- intervalos_bootstrap(x = dados, B = B, alpha = alpha) |
| 89 | + return(rbind(est1, est2)) |
| 90 | +} |
| 91 | + |
| 92 | +############# |
| 93 | +M <- 5E2 ## repetições |
| 94 | +Nboot <- 1000 ## bootstrap reps |
| 95 | +theta.vdd <- 2 |
| 96 | +Nsample <- 30 |
| 97 | + |
| 98 | +results <- do.call(rbind, |
| 99 | + lapply(1:M, function(i){ |
| 100 | + raw <- gera_e_estima( |
| 101 | + n = Nsample, |
| 102 | + theta = theta.vdd, |
| 103 | + B = Nboot |
| 104 | + ) |
| 105 | + raw$replicate <- i |
| 106 | + return(raw) |
| 107 | + })) |
| 108 | + |
| 109 | +results$covers <- is_in(x = theta.vdd, |
| 110 | + l = results$lwr, |
| 111 | + u = results$upr) |
| 112 | +results$width <- results$upr - results$lwr |
| 113 | + |
| 114 | +aggregate((point-theta.vdd)~method, mean, |
| 115 | + data = results) |
| 116 | +aggregate(point~method, var, data = results) |
| 117 | +aggregate(covers~method, mean, data = results) |
| 118 | + |
0 commit comments