-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdossier.py
927 lines (852 loc) · 38 KB
/
dossier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
"""!
DOSSIER - Functions to Analyze Simulation Results Database and
Periodic Archives from DOSE (Digital Organism Simulation Environment)
Simulations.
Date created: 17th April 2021
"""
import os
import sqlite3 as s
import sys
import networkx as nx
import pandas as pd
def ConnectDB(path):
"""!
Function to connect to a DOSE simulation results database.
@param path: Absolute or relative path to DOSE simulation results
database.
@type path: String
@return: Object representing a DOSE simulation results database.
"""
database_object = DOSE_Result_Database(path)
print("Connect to DOSE Results Database ...")
print("(Relative) Path = %s" % database_object.path)
print("Absolute Path = %s" % database_object.abspath)
return database_object
class DOSE_Result_Database(object):
"""!
Class to encapsulate a DOSE simulation results database. The data
tables in a DOSE simulation results database are:
- parameters (start_time text, simulation_name text, key text,
value text)
- organisms (start_time text, pop_name text, org_name text,
generation text, key text, value text)
- world (start_time text, x text, y text, z text, generation
text, key text, value text)
- miscellaneous (start_time text, generation text, key text,
value text)
"""
def __init__(self, path):
"""!
Initialization method.
@param path: Absolute or relative path to DOSE simulation results
database.
@type path: String
"""
self.path = path
self.abspath = os.path.abspath(self.path)
self.con = s.connect(self.abspath)
self.record_results = True
self.operation_count = 0
self.sql_statements = {}
self.last_sql_statement = ""
##################################################################
# 1. SQL Executor
##################################################################
def _ExecuteSQL(self, sqlstmt, operation_type="USER"):
"""!
Private method to execute a SQL statement recognized by SQLite.
@param sqlstmt: SQLite SQL statement to execute.
@type sqlstmt: String
@param operation_type: Define type of operation. Default = "USER".
@type operation_type: String
@return: Pandas dataframe containing results.
"""
dataframe = pd.read_sql_query(sqlstmt, self.con)
statement = operation_type + "|" + sqlstmt
self.sql_statements[self.operation_count + 1] = statement
self.last_sql_statement = self.sql_statements[self.operation_count + 1]
self.operation_count = self.operation_count + 1
return dataframe
##################################################################
# (End of) SQL Executor
##################################################################
##################################################################
# 2. Primary Metadata Information Getter
##################################################################
def Sims(self):
"""!
Method to list available simulation results. Logged operation
type = SIMS.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- simulation_name (name of simulation)
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct start_time, simulation_name from parameters"
dataframe = self._ExecuteSQL(sqlstmt, "SIMS")
return dataframe
def ParamTypes(self, table, to_list=True):
"""!
Method to list parameters types for a table. Logged operation
type = PType.
@param table: Data table to list. Allowable types are
"parameters", "organisms", "world", and "miscellaneous".
@type table: String
@param to_list: If True, returns parameter types as a list.
Default = True.
@return: if to_list == True, returns a list of results; else,
return Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct key from %s" % table.lower()
dataframe = self._ExecuteSQL(sqlstmt, "PType")
if to_list:
return dataframe['key'].values.tolist()
else:
return dataframe
##################################################################
# (End of) Primary Metadata Information Getter
##################################################################
##################################################################
# 3. Simulation Parameters (Table = parameters) Getter
##################################################################
def SimParam_Time(self, start_time):
"""!
Method to list parameters of a given simulation (by start_time).
Logged operation type = SPTime.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- x (x-axis of ecological cell)
- y (y-axis of ecological cell)
- z (z-axis of ecological cell)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct key, value from parameters where start_time = '%s' and key != 'interpreter' and key != 'deployment_scheme'" % str(start_time)
dataframe = self._ExecuteSQL(sqlstmt, "SPTime")
dataframe["start_time"] = start_time
dataframe["x"] = None
dataframe["y"] = None
dataframe["z"] = None
dataframe["generation"] = None
column_names = ["start_time", "x", "y", "z",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def SimParam_Name(self, parameter):
"""!
Method to list the values of parameter across simulations.
Logged operation type = SPName.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- x (x-axis of ecological cell)
- y (y-axis of ecological cell)
- z (z-axis of ecological cell)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param parameter: Required parameter value.
@type parameter: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT start_time, value from parameters where key = '%s'" % str(parameter)
dataframe = self._ExecuteSQL(sqlstmt, "SPName")
dataframe["key"] = parameter
dataframe["x"] = None
dataframe["y"] = None
dataframe["z"] = None
dataframe["generation"] = None
column_names = ["start_time", "x", "y", "z",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def SimParam_TimeName(self, start_time, parameter):
"""!
Method to get the value of one parameter in one simulation.
Logged operation type = SPTN.
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@param parameter: Required parameter value.
@type parameter: String
@return: Parameter value.
"""
sqlstmt = "SELECT value from parameters where start_time = '%s' and key = '%s'" % (str(start_time), str(parameter))
dataframe = self._ExecuteSQL(sqlstmt, "SPTN")
return dataframe['value'].values.tolist()[0]
##################################################################
# (End of) Simulation Parameters (Table = parameters) Getter
##################################################################
##################################################################
# 4. World Parameters (Table = world) Getter
##################################################################
def WorldParam_Time(self, start_time):
"""!
Method to list world parameters of a given simulation (by start_time).
Logged operation type = WPTime.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- x (x-axis of ecological cell)
- y (y-axis of ecological cell)
- z (z-axis of ecological cell)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct x, y, z, generation, key, value from world where start_time = '%s'" % str(start_time)
dataframe = self._ExecuteSQL(sqlstmt, "WPTime")
dataframe["start_time"] = start_time
column_names = ["start_time", "x", "y", "z",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def WorldParam_TimeCell(self, start_time, x, y, z):
"""!
Method to list the parameters of a specific ecological cell of
a given simulation (by start_time). Logged operation type =
WPTCell.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- x (x-axis of ecological cell)
- y (y-axis of ecological cell)
- z (z-axis of ecological cell)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation.
@type start_time: String
@param x: x-axis of ecological cell.
@type x: Integer
@param y: y-axis of ecological cell.
@type y: Integer
@param z: z-axis of ecological cell.
@type z: Integer
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct generation, key, value from world where start_time = '%s' and x = '%s' and y = '%s' and z = '%s'" % (str(start_time), str(x), str(y), str(z))
dataframe = self._ExecuteSQL(sqlstmt, "WPTCell")
dataframe["start_time"] = start_time
dataframe["x"] = x
dataframe["y"] = y
dataframe["z"] = z
column_names = ["start_time", "x", "y", "z",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def WorldParam_TimeCellName(self, start_time, x, y, z, parameter):
"""!
Method to list the values of a specific parameter of a specific
ecological cell of a given simulation (by start_time). Logged
operation type = WPTCN.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- x (x-axis of ecological cell)
- y (y-axis of ecological cell)
- z (z-axis of ecological cell)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation.
@type start_time: String
@param x: x-axis of ecological cell.
@type x: Integer
@param y: y-axis of ecological cell.
@type y: Integer
@param z: z-axis of ecological cell.
@type z: Integer
@param parameter: Required parameter value.
@type parameter: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct generation, value from world where start_time = '%s' and x = '%s' and y = '%s' and z = '%s' and key = '%s'" % (str(start_time), str(x), str(y), str(z), str(parameter))
dataframe = self._ExecuteSQL(sqlstmt, "WPTCN")
dataframe["start_time"] = start_time
dataframe["key"] = parameter
dataframe["x"] = x
dataframe["y"] = y
dataframe["z"] = z
column_names = ["start_time", "x", "y", "z",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
##################################################################
# (End of) World Parameters (Table = world) Getter
##################################################################
##################################################################
# 5. Organisms Parameters (Table = organisms) Getter
##################################################################
def OrgParam_Time(self, start_time):
"""!
Method to list organism data for a simulation (by start_time).
Logged operation type = OPTime.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- pop_name (population name)
- org_name (organism name)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct pop_name, org_name, generation, key, value from organisms where start_time = '%s'" % (str(start_time))
dataframe = self._ExecuteSQL(sqlstmt, "OPTime")
dataframe["start_time"] = start_time
column_names = ["start_time", "pop_name", "org_name",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def OrgParam_Pop(self, pop_name):
"""!
Method to list organism data for a population (by pop_name).
Logged operation type = OPPN.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- pop_name (population name)
- org_name (organism name)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param pop_name: Name of the population.
@type pop_name: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct start_time, org_name, generation, key, value from organisms where pop_name = '%s'" % (str(pop_name))
dataframe = self._ExecuteSQL(sqlstmt, "OPPN")
dataframe["pop_name"] = pop_name
column_names = ["start_time", "pop_name", "org_name",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def OrgParam_TimePop(self, start_time, pop_name):
"""!
Method to list organism data for a population within a simulation.
Logged operation type = OPTP.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- pop_name (population name)
- org_name (organism name)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@param pop_name: Name of the population.
@type pop_name: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct org_name, generation, key, value from organisms where start_time = '%s' and pop_name = '%s'" % (str(start_time), str(pop_name))
dataframe = self._ExecuteSQL(sqlstmt, "OPTP")
dataframe["start_time"] = start_time
dataframe["pop_name"] = pop_name
column_names = ["start_time", "pop_name", "org_name",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def OrgParam_TimePopName(self, start_time, pop_name, parameter):
"""!
Method to list specific organism parameter for a population
within a simulation.
Logged operation type = OPTPN.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- pop_name (population name)
- org_name (organism name)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@param pop_name: Name of the population.
@type pop_name: String
@param parameter: Required parameter value.
@type parameter: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct org_name, generation, value from organisms where start_time = '%s' and pop_name = '%s' and key = '%s'" % (str(start_time), str(pop_name), str(parameter))
dataframe = self._ExecuteSQL(sqlstmt, "OPTPN")
dataframe["start_time"] = start_time
dataframe["pop_name"] = pop_name
dataframe["key"] = parameter
column_names = ["start_time", "pop_name", "org_name",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
##################################################################
# (End of) Organisms Parameters (Table = organisms) Getter
##################################################################
##################################################################
# 6. Miscellaneous Parameters (Table = miscellaneous) Getter
##################################################################
def MiscParam_Time(self, start_time):
"""!
Method to list miscellaneous parameters of a given simulation
(by start_time). Logged operation type = MPTime.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- x (x-axis of ecological cell)
- y (y-axis of ecological cell)
- z (z-axis of ecological cell)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct generation, key, value from miscellaneous where start_time = '%s'" % str(start_time)
dataframe = self._ExecuteSQL(sqlstmt, "MPTime")
dataframe["start_time"] = start_time
dataframe["x"] = None
dataframe["y"] = None
dataframe["z"] = None
column_names = ["start_time", "x", "y", "z",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
def MiscParam_TimeName(self, start_time, parameter):
"""!
Method to list specific world parameters of a given simulation
(by start_time). Logged operation type = MPTN.
Returned Pandas dataframe columns:
- start_time (start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation)
- x (x-axis of ecological cell)
- y (y-axis of ecological cell)
- z (z-axis of ecological cell)
- generation (generation count)
- key (parameter name)
- value (parameter value)
@param start_time: Start time of simulation, which is used as
primary key to extract data and results pertaining to the
simulation
@type start_time: String
@param parameter: Required parameter value.
@type parameter: String
@return: Pandas dataframe containing results.
"""
sqlstmt = "SELECT distinct generation, value from miscellaneous where start_time = '%s' and key = '%s'" % (str(start_time), str(parameter))
dataframe = self._ExecuteSQL(sqlstmt, "MPTN")
dataframe["start_time"] = start_time
dataframe["key"] = parameter
dataframe["x"] = None
dataframe["y"] = None
dataframe["z"] = None
column_names = ["start_time", "x", "y", "z",
"generation", "key", "value"]
return dataframe.reindex(columns=column_names)
##################################################################
# (End of) Miscellaneous Parameters (Table = miscellaneous) Getter
##################################################################
def FindConstantColumns(dataframe):
"""!
Function to identify columns with constant value.
@param dataframe: Pandas dataframe to process.
@return: List of column names with constant value.
"""
constantCols = [c for c in dataframe.columns
if len(set(dataframe[c])) == 1]
return constantCols
def RemoveColumn(dataframe, column_name):
"""!
Function to remove / drop a column from data frame.
@param dataframe: Pandas data frame to process.
@param column_name: Column to remove / drop.
@type column_name: String
@return: Reduced Pandas data frame
"""
return dataframe.drop(column_name, 1)
def SaveDataframe(dataframe, filepath, format="xlsx"):
"""!
Function to save a data frame into a file.
@param dataframe: Pandas data frame to save.
@param filepath: Relative or absolute file path to save.
@type filepath: String
@param format: Type of format to save as. Allowable types are
"xlsx" (Microsoft Excel), "csv" (comma-separated values).
Default = xlsx.
@type format: String
"""
filepath = os.path.abspath(filepath)
if format.lower() == "xlsx":
dataframe.to_excel(filepath, index=False)
elif format.lower() == "csv":
dataframe.to_csv(filepath, index=False)
print("Data saved as %s format into %s" % (format, filepath))
def GenerateFitness(fitnessFunction, simSet, DOSEdb, **fitF):
"""!
Runner function to generate fitness score table using given fitness
function(**fitF). Depending on simSet, multiple replicates of the
same simulation can be processed.
@param fitnessFunction: User-defined function for fitness
calculation of one replicate.
@type fitnessFunction: Function
@param simSet: Dictionary of {<start_time>: <replicate>}
@type simSet: Dictionary
@param DOSEdb: dossier.DOSE_Result_Database object
@type DOSEdb: Object
@return: Pandas dataframe of {Replicate, Generation, DO(1), ..., DO(n)}
"""
fitnessTables = []
for sim_time in simSet:
print("Processing simulation start time %s as replicate %s" % \
(str(sim_time), str(simSet[sim_time])))
simDF = DOSEdb.OrgParam_Time(sim_time)
fTable = fitnessFunction(simDF, simSet[sim_time], fitF)
org_count = max([len(x)-2 for x in fTable])
columns = ["Replicate", "Generation"] + \
["DO" + str(i+1) for i in range(org_count)]
fDF = pd.DataFrame(fTable, columns=columns)
fitnessTables.append(fDF)
fitnessDF = pd.concat(fitnessTables, ignore_index=True)
return fitnessDF
def SubsequenceCounter(dataframe, replicate, kwargs):
"""!
Fitness Function for generateFitness() - Fitness score = number of
subsequences in the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
subsequence = kwargs["subsequence"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[row["value"].count(subsequence)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureEfficiency(dataframe, replicate, kwargs):
"""!
Fitness Function for generateFitness(): Fitness score - local
or global efficiency for the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure = kwargs["measure"]
len_of_measure = kwargs["len_of_measure"]
type_of_measure = kwargs["type_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure):
reactions = []
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure.keys():
reactions.append(measure[sequence[dinucleotide:dinucleotide+len_of_measure]])
else:
pass
G = nx.Graph()
G.add_edges_from([r for r in reactions])
if type_of_measure == "local":
return nx.local_efficiency(G)
elif type_of_measure == "global":
return nx.global_efficiency(G)
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureSum(dataframe, replicate, kwargs):
"""!
Fitness Function for generateFitness(): Fitness score - sum of
perception or enzymatic genes in the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure = kwargs["measure"]
len_of_measure = kwargs["len_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure):
measure_sum = 0
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure:
measure_sum += 1
else:
pass
return measure_sum
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureGeneSpaceUtilization(dataframe, replicate, kwargs):
"""!
Fitness Function for generateFitness(): Fitness score - gene space
being utilized by the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure1 = kwargs["measure1"]
measure2 = kwargs["measure2"]
len_of_measure = kwargs["len_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure1, measure2):
measure1_sum = 0
measure2_sum = 0
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure1:
measure1_sum += 1
else:
pass
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure2:
measure2_sum += 1
else:
pass
return (((measure2_sum + measure1_sum) / 780) * 100)
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure1, measure2)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureDensity(dataframe, replicate, kwargs):
"""!
Fitness Function for generateFitness(): Fitness score - directed
or undirected density for the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure = kwargs["measure"]
len_of_measure = kwargs["len_of_measure"]
type_of_measure = kwargs["type_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure):
reactions = []
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure.keys():
reactions.append(measure[sequence[dinucleotide:dinucleotide+len_of_measure]])
else:
pass
if type_of_measure == "undirected":
G = nx.Graph()
elif type_of_measure == "directed":
G = nx.DiGraph()
G.add_edges_from([r for r in reactions])
return nx.density(G)
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureDiversity(dataframe, replicate, kwargs):
"""!
Fitness Function for generateFitness(): Fitness score - unique number
of perception or enzymatic genes for the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure = kwargs["measure"]
len_of_measure = kwargs["len_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure):
measure_diversity = []
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure:
measure_diversity.append(sequence[dinucleotide:dinucleotide+len_of_measure])
else:
pass
return len(set(measure_diversity))
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureDiameter(dataframe, replicate, kwargs):
"""!
Fitness function for GenerateFitness(): Fitness score - diameter
for the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure = kwargs["measure"]
len_of_measure = kwargs["len_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure):
reactions = []
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure.keys():
reactions.append(measure[sequence[dinucleotide:dinucleotide+len_of_measure]])
else:
pass
G = nx.Graph()
G.add_edges_from([r for r in reactions])
return nx.diameter(G)
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureRichClubCoefficient(dataframe, replicate, kwargs):
"""!
Fitness function for GenerateFitness(): Fitness score - rich club
coefficient for the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure = kwargs["measure"]
len_of_measure = kwargs["len_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure):
reactions = []
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure.keys():
reactions.append(measure[sequence[dinucleotide:dinucleotide+len_of_measure]])
else:
pass
G = nx.Graph()
G.add_edges_from([r for r in reactions])
return nx.rich_club_coefficient(G)
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable
def MeasureNodes(dataframe, replicate, kwargs):
"""!
Fitness function for GenerateFitness(): Fitness score - number of
nodes for the first chromosome.
@param dataframe: Returned dataframe from dossier.
DOSE_Result_Database.OrgParam_Time()
@param replicate: Replicate number
@type replicate: Integer
@param kwargs: Keyword parameters used for fitness calculation.
@return: [Replicate, Generation, DO(1), ..., DO(n)] of fitness
scores.
"""
measure = kwargs["measure"]
len_of_measure = kwargs["len_of_measure"]
generations = list(set(dataframe["generation"].tolist()))
generations.sort()
fitnessTable = []
def _core(sequence, measure):
reactions = []
for dinucleotide in range(0, len(sequence), len_of_measure):
if sequence[dinucleotide:dinucleotide+len_of_measure] in measure.keys():
reactions.append(measure[sequence[dinucleotide:dinucleotide+len_of_measure]])
else:
pass
G = nx.Graph()
G.add_edges_from([r for r in reactions])
return G.number_of_nodes()
for gen_count in generations:
dataDF = dataframe[(dataframe["generation"] == gen_count) & \
(dataframe["key"] == "chromosome_0")]
fScore = [replicate, gen_count] + \
[_core(row["value"], measure)
for index, row in dataDF.iterrows()]
fitnessTable.append(fScore)
return fitnessTable