@@ -23,7 +23,7 @@ class _minimal_norm(object):
23
23
24
24
@classmethod
25
25
def _approx_erf (cls , x ):
26
- """ Approximate solution to the error function
26
+ """Approximate solution to the error function
27
27
28
28
http://en.wikipedia.org/wiki/Error_function
29
29
@@ -36,7 +36,7 @@ def _approx_erf(cls, x):
36
36
37
37
@classmethod
38
38
def _approx_inv_erf (cls , z ):
39
- """ Approximate solution to the inverse error function
39
+ """Approximate solution to the inverse error function
40
40
41
41
http://en.wikipedia.org/wiki/Error_function
42
42
@@ -50,7 +50,7 @@ def _approx_inv_erf(cls, z):
50
50
51
51
@classmethod
52
52
def ppf (cls , q ):
53
- """ Percent point function (inverse of cdf)
53
+ """Percent point function (inverse of cdf)
54
54
55
55
Wikipedia: https://goo.gl/Rtxjme
56
56
@@ -59,7 +59,7 @@ def ppf(cls, q):
59
59
60
60
@classmethod
61
61
def cdf (cls , x ):
62
- """ Cumulative density function
62
+ """Cumulative density function
63
63
64
64
Wikipedia: https://goo.gl/ciUNLx
65
65
@@ -68,7 +68,7 @@ def cdf(cls, x):
68
68
69
69
70
70
class ProbScale (ScaleBase ):
71
- """ A probability scale for matplotlib Axes.
71
+ """A probability scale for matplotlib Axes.
72
72
73
73
Parameters
74
74
----------
@@ -105,7 +105,7 @@ def __init__(self, axis, **kwargs):
105
105
106
106
@classmethod
107
107
def _get_probs (cls , nobs , as_pct ):
108
- """ Returns the x-axis labels for a probability plot based on
108
+ """Returns the x-axis labels for a probability plot based on
109
109
the number of observations (`nobs`).
110
110
"""
111
111
if as_pct :
0 commit comments