-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsource_code.py
126 lines (49 loc) · 1.18 KB
/
source_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas
# In[14]:
train_data_frame = pandas.read_csv("mnist_train.csv")
test_data_frame = pandas.read_csv("mnist_test.csv")
# In[15]:
train_data_frame.shape
# In[16]:
test_data_frame.shape
# In[17]:
train_data = train_data_frame.values
# In[19]:
X_train = train_data[ : ,1: ]
# In[20]:
Y_train = train_data[ : , 0]
# In[34]:
test_data = test_data_frame.values
X_test = test_data[:,1:]
Y_test = test_data[:,0]
# In[35]:
import numpy
# In[36]:
def cart_distance (x1, x2):
return numpy.sqrt(sum((x1-x2)**2))
# In[37]:
def kNN (X, Y, test_point, k):
vals = []
m = X.shape[0]
for i in range (m):
dist = cart_distance(test_point, X[i])
vals.append((dist, Y[i]))
vals = sorted(vals)
vals = vals[:k]
vals = numpy.array(vals)
new_vals = numpy.unique(vals[:,1], return_counts=True)
index = new_vals[1].argmax()
prediction = new_vals[0][index]
return prediction
# In[38]:
result = kNN (X_train, Y_train, X_test[1], 5)
# In[39]:
print (int(result))
# In[49]:
print(Y_test[1])
# In[ ]:
# In[ ]:
# In[ ]: