|
| 1 | +# Generate music using the model trained earlier |
| 2 | + |
| 3 | +from keras.models import load_model |
| 4 | +import numpy as np |
| 5 | +import pickle |
| 6 | +from music21 import converter, instrument, note, chord, stream |
| 7 | + |
| 8 | +notes = [] |
| 9 | + |
| 10 | +with open ("notes", "rb") as file: |
| 11 | + notes = pickle.load(file) |
| 12 | + |
| 13 | +pitch_names = sorted(set(notes)) |
| 14 | + |
| 15 | +model = load_model("model.hdf5") |
| 16 | + |
| 17 | +# Create a mapping from int to element |
| 18 | +int_to_element = dict ((num, element) for num, element in enumerate (pitch_names)) |
| 19 | +element_to_int = dict ((element, num) for num, element in int_to_element.items()) |
| 20 | + |
| 21 | +sequence_length = 100 |
| 22 | + |
| 23 | +test_input = [] |
| 24 | + |
| 25 | +for i in range (len(notes) - sequence_length): |
| 26 | + seq_inp = notes[i:i+sequence_length] |
| 27 | + test_input.append([element_to_int[ch] for ch in seq_inp]) |
| 28 | + |
| 29 | +vocab_len = 359 |
| 30 | + |
| 31 | +# Randomly select a sequence of notes from test_input |
| 32 | +start = np.random.randint(len(test_input)-1) |
| 33 | + |
| 34 | + |
| 35 | +# Feed this to model and get prediction |
| 36 | +pattern = test_input[start] |
| 37 | +final_prediction = [] |
| 38 | +print("Running the model...") |
| 39 | + |
| 40 | +for note_index in range(200): |
| 41 | + pred_inp = np.reshape(pattern, (1, len(pattern), 1)) |
| 42 | + inp = pred_inp/float(vocab_len) |
| 43 | + |
| 44 | + prediction = model.predict(inp, verbose=0) |
| 45 | + idx = np.argmax(prediction) |
| 46 | + result = int_to_element[idx] |
| 47 | + |
| 48 | + # Append this predicted note output to final_prediction |
| 49 | + final_prediction.append(result) |
| 50 | + |
| 51 | + # Next input to model should also have same size |
| 52 | + # So use this same input, but drop the first note and append the predicted note |
| 53 | + pattern = pattern[1:] |
| 54 | + pattern.append(idx) |
| 55 | + |
| 56 | +print("Music generated!") |
| 57 | +# Create MIDI files |
| 58 | +print("Creating MIDI file...") |
| 59 | + |
| 60 | +offset = 0 #Time |
| 61 | +final_notes = [] |
| 62 | + |
| 63 | +for pattern in final_prediction: |
| 64 | + #If pattern is a chord |
| 65 | + if ('+' in pattern ) or pattern.isdigit(): |
| 66 | + notes_in_chord = pattern.split('+') |
| 67 | + temp_notes = [] |
| 68 | + |
| 69 | + for curr_note in notes_in_chord: |
| 70 | + # For each note in the chord, create a new Note object |
| 71 | + new_note = note.Note(int(curr_note)) |
| 72 | + new_note.storedInstrument = instrument.Piano() |
| 73 | + temp_notes.append(new_note) |
| 74 | + |
| 75 | + new_chord = chord.Chord(temp_notes) |
| 76 | + new_chord.offset = offset |
| 77 | + final_notes.append(new_chord) |
| 78 | + |
| 79 | + #If pattern is a note |
| 80 | + else: |
| 81 | + curr_note = note.Note(pattern) |
| 82 | + curr_note.offset = offset |
| 83 | + curr_note.storedInstrument = instrument.Piano() |
| 84 | + final_notes.append(curr_note) |
| 85 | + |
| 86 | + offset += 0.5 |
| 87 | + |
| 88 | + |
| 89 | +# Create a stream object from the generated notes |
| 90 | +MIDI_stream = stream.Stream(final_notes) |
| 91 | +MIDI_stream.write('midi', fp = 'output.mid') |
| 92 | +print("Music saved as \"output.mid\" in current directory") |
0 commit comments