-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
50 lines (37 loc) · 1.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import sys
import os
# add the path to project -اضافه کردن مسیر پروژه به sys.path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import torch
from torch.utils.data import DataLoader
from torch import nn, optim
from utils.data_loader import CelebADataset
from models.autoencoder import Autoencoder
# utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_path = "D:/celebA/celeba-dataset/img_align_celeba/train"
batch_size = 16
epochs = 2
learning_rate = 0.001
# load data
train_dataset = CelebADataset(train_path, img_size=(128, 128))
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# mpdel, loss function and optimizer -مدل، تابع خطا و بهینهساز
model = Autoencoder().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# training model
for epoch in range(epochs):
model.train()
running_loss = 0.0
for upper_half, lower_half in train_loader:
upper_half, lower_half = upper_half.to(device), lower_half.to(device)
optimizer.zero_grad()
outputs = model(upper_half)
loss = criterion(outputs, lower_half)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch [{epoch + 1}/{epochs}], Loss: {running_loss / len(train_loader):.4f}")
# save model
torch.save(model.state_dict(), "models/autoencoder.pth")