forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathggml-rknpu2.c
536 lines (453 loc) · 16.6 KB
/
ggml-rknpu2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#include "ggml-rknpu2.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "rknn_api.h"
#include "rknn_matmul_api.h"
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <arm_neon.h>
#define GGML_RKNPU2_INPUT_SCALE 1.7f
static __fp16 arm_fp32_to_fp16(float x) {
return (__fp16)x;
}
rknn_tensor_type rknpu2_matmul_type_to_rknn_type_input(rknn_matmul_type type)
{
switch(type) {
case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32:
return RKNN_TENSOR_FLOAT16;
case RKNN_INT8_MM_INT8_TO_INT32:
return RKNN_TENSOR_INT8;
case RKNN_INT4_MM_INT4_TO_INT16:
return RKNN_TENSOR_INT4;
default:
GGML_ASSERT(0);
}
}
rknn_tensor_type rknpu2_matmul_type_to_rknn_type_output(rknn_matmul_type type)
{
switch(type) {
case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32:
return RKNN_TENSOR_FLOAT32;
case RKNN_INT8_MM_INT8_TO_INT32:
return RKNN_TENSOR_INT32;
case RKNN_INT4_MM_INT4_TO_INT16:
return RKNN_TENSOR_INT16;
default:
GGML_ASSERT(0);
}
}
rknn_matmul_type rknpu2_matmul_type_from_rknn_type(rknn_tensor_type type)
{
switch(type) {
case RKNN_TENSOR_FLOAT16:
return RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32;
case RKNN_TENSOR_INT8:
return RKNN_INT8_MM_INT8_TO_INT32;
case RKNN_TENSOR_INT4:
return RKNN_INT4_MM_INT4_TO_INT16;
default:
GGML_ASSERT(0);
}
}
rknn_tensor_type rknpu2_matmul_input_type_to_output_type(rknn_tensor_type type)
{
switch(type) {
case RKNN_TENSOR_FLOAT16:
return RKNN_TENSOR_FLOAT32;
case RKNN_TENSOR_INT8:
return RKNN_TENSOR_INT32;
case RKNN_TENSOR_INT4:
return RKNN_TENSOR_INT16;
default:
GGML_ASSERT(0);
}
}
const char* rknpu2_tensor_type_to_string(rknn_tensor_type type)
{
switch(type) {
case RKNN_TENSOR_FLOAT32:
return "FLOAT32";
case RKNN_TENSOR_FLOAT16:
return "FLOAT16";
case RKNN_TENSOR_INT8:
return "INT8";
case RKNN_TENSOR_INT16:
return "INT16";
case RKNN_TENSOR_INT32:
return "INT32";
case RKNN_TENSOR_UINT8:
return "UINT8";
case RKNN_TENSOR_UINT16:
return "UINT16";
default:
GGML_ASSERT(0);
}
}
struct ggml_rknpu2_data_pack
{
rknn_tensor_type type;
void* ordered_data;
int initialized;
// RKNPU2 API structs
rknn_tensor_mem* B;
};
struct ggml_rknpu2_matmul_kernel
{
rknn_matmul_info matmul_info;
rknn_matmul_ctx matmul_ctx;
rknn_matmul_io_attr matmul_io_attr;
rknn_tensor_mem* A;
rknn_tensor_mem* C;
};
#define GGML_RKNPU2_USE_OUTSIDE_ALLOC 1
#if GGML_RKNPU2_USE_OUTSIDE_ALLOC
struct dma_heap_allocation_data {
uint64_t len;
uint32_t fd;
uint32_t fd_flags;
uint64_t heap_flags;
};
#define DMA_HEAP_IOC_MAGIC 'H'
#define DMA_HEAP_IOCTL_ALLOC _IOWR(DMA_HEAP_IOC_MAGIC, 0x0,\
struct dma_heap_allocation_data)
#define DMA_BUF_SYNC_READ (1 << 0)
#define DMA_BUF_SYNC_WRITE (2 << 0)
#define DMA_BUF_SYNC_RW (DMA_BUF_SYNC_READ | DMA_BUF_SYNC_WRITE)
#define DMA_BUF_SYNC_START (0 << 2)
#define DMA_BUF_SYNC_END (1 << 2)
#define DMA_BUF_BASE 'b'
#define DMA_BUF_IOCTL_SYNC _IOW(DMA_BUF_BASE, 0, uint64_t)
#define CMA_HEAP_SIZE (1024 * 1024)
//Helper function to manually allocate buffer from dma_heap for RKNPU2
//The internal RKNPU2 API will allocate buffer from DMA32 heap, which is only 4GiB, not enough for large models.
//WARNING: Memory leak will not be released on exit!! But it will be released on next run...?
int dma_alloc(size_t size, int *fd, void **va) {
int ret;
int prot;
void *mmap_va;
int dma_heap_fd = -1;
struct dma_heap_allocation_data buf_data;
const char* path = "/dev/dma_heap/system";
/* open dma_heap fd */
dma_heap_fd = open(path, O_RDWR);
if (dma_heap_fd < 0) {
printf("open %s fail!\n", path);
return dma_heap_fd;
}
/* alloc buffer */
memset(&buf_data, 0x0, sizeof(struct dma_heap_allocation_data));
buf_data.len = size;
buf_data.fd_flags = O_CLOEXEC | O_RDWR;
ret = ioctl(dma_heap_fd, DMA_HEAP_IOCTL_ALLOC, &buf_data);
if (ret < 0) {
printf("RK_DMA_HEAP_ALLOC_BUFFER failed\n");
return ret;
}
/* mmap va */
if (fcntl(buf_data.fd, F_GETFL) & O_RDWR)
prot = PROT_READ | PROT_WRITE;
else
prot = PROT_READ;
/* mmap contiguors buffer to user */
mmap_va = (void *)mmap(NULL, buf_data.len, prot, MAP_SHARED, buf_data.fd, 0);
if (mmap_va == MAP_FAILED) {
printf("mmap failed: %s\n", strerror(errno));
return -errno;
}
*va = mmap_va;
*fd = buf_data.fd;
close(dma_heap_fd);
return 0;
}
int dma_sync_device_to_cpu(int fd) {
uint64_t flags = DMA_BUF_SYNC_START | DMA_BUF_SYNC_RW;
return ioctl(fd, DMA_BUF_IOCTL_SYNC, &flags);
}
int dma_sync_cpu_to_device(int fd) {
uint64_t flags = DMA_BUF_SYNC_END | DMA_BUF_SYNC_RW;
return ioctl(fd, DMA_BUF_IOCTL_SYNC, &flags);
}
void dma_buf_free(size_t size, int *fd, void *va) {
int len;
len = size;
munmap(va, len);
close(*fd);
*fd = -1;
}
#endif
// Pool of RKNPU2 matmul kernels so we can reuse them
#define GGML_RKNPU2_MAX_MATMUL_KERNELS 16
static struct ggml_rknpu2_matmul_kernel matmul_kernels[GGML_RKNPU2_MAX_MATMUL_KERNELS];
static int matmul_kernels_count = 0;
static uint64_t rknpu2_allocated_bytes = 0;
static struct ggml_rknpu2_matmul_kernel *
ggml_rknpu2_matmul_kernel_find(int m, int k, int n, rknn_tensor_type type) {
for (int i = 0; i < matmul_kernels_count; i++) {
struct ggml_rknpu2_matmul_kernel *kernel = &matmul_kernels[i];
if (kernel->matmul_info.M == m && kernel->matmul_info.K == k &&
kernel->matmul_info.N == n &&
rknpu2_matmul_type_to_rknn_type_input(kernel->matmul_info.type) == type)
return kernel;
}
return NULL;
}
static struct ggml_rknpu2_matmul_kernel* ggml_rknpu2_matmul_kernel_create(int m, int k, int n, rknn_tensor_type type)
{
struct ggml_rknpu2_matmul_kernel* kernel = ggml_rknpu2_matmul_kernel_find(m, k, n, type);
if(kernel != NULL)
return kernel;
GGML_ASSERT(matmul_kernels_count < GGML_RKNPU2_MAX_MATMUL_KERNELS);
kernel = &matmul_kernels[matmul_kernels_count++];
memset(kernel, 0, sizeof(struct ggml_rknpu2_matmul_kernel));
kernel->matmul_info.M = m;
kernel->matmul_info.K = k;
kernel->matmul_info.N = n;
kernel->matmul_info.type = rknpu2_matmul_type_from_rknn_type(type);
kernel->matmul_info.B_layout = 1; // B use native layout (weight)
kernel->matmul_info.AC_layout = 0; // A and C use original layout (intermediate)
int ret = rknn_matmul_create(&kernel->matmul_ctx, &kernel->matmul_info, &kernel->matmul_io_attr);
GGML_ASSERT(ret == 0);
rknn_matmul_set_core_mask(kernel->matmul_ctx, RKNN_NPU_CORE_1);
printf("Created RKNPU2 matmul kernel: src0(%d, %d) x src1(%d, %d) = dst(%d, %d) %s\n", m, k, k, n, m, n, rknpu2_tensor_type_to_string(type));
kernel->A = rknn_create_mem(kernel->matmul_ctx, kernel->matmul_io_attr.A.size);
kernel->C = rknn_create_mem(kernel->matmul_ctx, kernel->matmul_io_attr.C.size);
ret = rknn_matmul_set_io_mem(kernel->matmul_ctx, kernel->A, &kernel->matmul_io_attr.A);
GGML_ASSERT(ret == 0);
ret = rknn_matmul_set_io_mem(kernel->matmul_ctx, kernel->C, &kernel->matmul_io_attr.C);
GGML_ASSERT(ret == 0);
return kernel;
}
void ggml_rknpu2_init(void)
{
// no-op
}
void ggml_rknpu2_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize)
{
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
struct ggml_rknpu2_data_pack* pack = src0->extra;
GGML_ASSERT(pack != NULL);
const int64_t m = src1->ne[1];
const int64_t k = src0->ne[0];
const int64_t n = dst->ne[0];
// First time called. Initialize RKNPU2 API structs
if(pack->initialized == 0) {
struct ggml_rknpu2_matmul_kernel* kernel = ggml_rknpu2_matmul_kernel_create(m, k, n, pack->type);
// allocate B
#if GGML_RKNPU2_USE_OUTSIDE_ALLOC
int fd = -1;
uint8_t *va = NULL;
dma_alloc(kernel->matmul_io_attr.B.size, &fd, (void *)&va);
dma_sync_device_to_cpu(fd);
pack->B = rknn_create_mem_from_fd(kernel->matmul_ctx, fd, va,
kernel->matmul_io_attr.B.size, 0);
memcpy(pack->B->virt_addr, pack->ordered_data,
kernel->matmul_io_attr.B.size);
dma_sync_cpu_to_device(fd);
#else
pack->B =
rknn_create_mem(kernel->matmul_ctx, kernel->matmul_io_attr.B.size);
memcpy(pack->B->virt_addr, pack->ordered_data,
kernel->matmul_io_attr.B.size);
#endif
free(pack->ordered_data);
rknpu2_allocated_bytes += kernel->matmul_io_attr.B.size;
printf("RKNPU2 allocated %f MiB\n",
rknpu2_allocated_bytes / 1024.0F / 1024.0F);
pack->ordered_data = NULL;
pack->initialized = 1;
}
struct ggml_rknpu2_matmul_kernel* kernel = ggml_rknpu2_matmul_kernel_find(m, k, n, pack->type);
// GGML will switch batch size on the fly. So we need to create a new kernel if the batch size is different
if(kernel == NULL)
kernel = ggml_rknpu2_matmul_kernel_create(m, k, n, pack->type);
GGML_ASSERT(kernel->matmul_io_attr.A.type == pack->type);
GGML_ASSERT(kernel->matmul_io_attr.C.type == rknpu2_matmul_input_type_to_output_type(pack->type));
rknn_tensor_type inference_type = pack->type;
if(inference_type == RKNN_TENSOR_FLOAT16) {
//A: fp32 -> fp16
float const* src1_data = src1->data;
__fp16* A = kernel->A->virt_addr;
#pragma clang loop unroll_count(32)
for(size_t i = 0; i < m*k; i++) {
A[i] = arm_fp32_to_fp16(src1_data[i]);
}
}
else if(inference_type == RKNN_TENSOR_INT8) {
//A: fp32 -> int8
float const* src1_data = src1->data;
int8_t* A = kernel->A->virt_addr;
#pragma clang loop unroll_count(32)
for(size_t i = 0; i < m*k; i++) {
float val = round(fmin(fmax(src1_data[i]*127.0f/GGML_RKNPU2_INPUT_SCALE, -127.0f), 127.0f));
A[i] = val;
}
}
else {
GGML_ASSERT(0 && "Unsupported inference type");
}
int ret = rknn_matmul_set_io_mem(kernel->matmul_ctx, kernel->A, &kernel->matmul_io_attr.A);
GGML_ASSERT(ret == 0);
ret = rknn_matmul_set_io_mem(kernel->matmul_ctx, pack->B, &kernel->matmul_io_attr.B);
GGML_ASSERT(ret == 0);
ret = rknn_matmul_run(kernel->matmul_ctx);
GGML_ASSERT(ret == 0);
// dst->data = kernel->C->virt_addr;
if(inference_type == RKNN_TENSOR_FLOAT16) {
//C: fp32 -> fp32
memcpy(dst->data, kernel->C->virt_addr, m * n * sizeof(float));
}
else if(inference_type == RKNN_TENSOR_INT8) {
//C: int32 -> fp32
float* dst_data = dst->data;
int32_t* C = kernel->C->virt_addr;
#pragma clang loop unroll_count(32)
for(size_t i = 0; i < m*n; i++)
dst_data[i] = C[i] / 127.0f / 127.f * GGML_RKNPU2_INPUT_SCALE;
}
else {
GGML_ASSERT(0 && "Unsupported inference type");
}
}
int ggml_rknpu2_can_mul_mat_b(const struct ggml_tensor * tensor)
{
const int64_t k = tensor->ne[0];
const int64_t n = tensor->ne[1];
if(k > 10240 || n > 4096) // RKNPU2 limit
return 0;
// k and n size must align to 32 bytes
if(k % 32 != 0 || n % 32 != 0)
return 0;
// make sure the tensor has assosiated data
if(tensor->backend != GGML_BACKEND_GPU)
return 0;
if(tensor->type != GGML_TYPE_Q8_0)
return 0;
return 1;
}
int ggml_rknpu2_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst)
{
// TODO: Support RK3566/RK3568 NPU. This is only for RK3588
if(ggml_rknpu2_can_mul_mat_b(src0) == 0)
return 0;
if(src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32)
return 0;
if(src0->extra == NULL)
return 0;
return 1;
}
static void ggml_rknpu2_transposed_to_native_fp16(__fp16 *restrict dst,
const float *restrict src,
size_t k, size_t n) {
GGML_ASSERT(k % 32 == 0 && n % 16 == 0 && k > 0 && n > 0);
// RKNN native layout is (N/16, K/32, 16, 32)
const size_t rknpu_strides[4] = {k / 32 * 16 * 32, 16 * 32, 32, 1};
// Block copy 32x16 at a time to improve cache locality
for (size_t j = 0; j < k / 32; j++) {
for (size_t i = 0; i < n / 16; i++) {
for (size_t ii = 0; ii < 16; ii++) {
size_t partial_src_idx = j * 32 + (i * 16 + ii) * k;
size_t partial_dst_idx =
i * rknpu_strides[0] + j * rknpu_strides[1] + ii * rknpu_strides[2];
for (size_t jj = 0; jj < 32; jj++) {
size_t src_idx = partial_src_idx + jj;
size_t dst_idx = partial_dst_idx + jj;
dst[dst_idx] = src[src_idx];
}
}
}
}
}
static void ggml_rknpu2_transposed_to_native_int8(int8_t *restrict dst,
const float *restrict src,
size_t k, size_t n) {
GGML_ASSERT(k % 32 == 0 && n % 32 == 0 && k > 0 && n > 0);
// RKNN native layout is (N/32, K/32, 32, 32)
const size_t rknpu_strides[4] = {k / 32 * 32 * 32, 32 * 32, 32, 1};
// Block copy 32x32 at a time to improve cache locality
for (size_t j = 0; j < k / 32; j++) {
for (size_t i = 0; i < n / 32; i++) {
for (size_t ii = 0; ii < 32; ii++) {
size_t partial_src_idx = j * 32 + (i * 32 + ii) * k;
size_t partial_dst_idx =
i * rknpu_strides[0] + j * rknpu_strides[1] + ii * rknpu_strides[2];
for (size_t jj = 0; jj < 32; jj++) {
size_t src_idx = partial_src_idx + jj;
size_t dst_idx = partial_dst_idx + jj;
dst[dst_idx] = round(fmin(fmax(src[src_idx], -1.0f), 1.0f) * 127.0f);
}
}
}
}
}
void ggml_rknpu2_transform_tensor(void * data, struct ggml_tensor * tensor)
{
const int64_t ne0 = tensor->ne[0];
const int64_t ne1 = tensor->ne[1];
const int64_t ne2 = tensor->ne[2];
const int64_t ne3 = tensor->ne[3];
const int64_t nb0 = tensor->nb[0];
const int64_t nb1 = tensor->nb[1];
const enum ggml_type type = tensor->type;
GGML_ASSERT(ne2 == 1 && ne3 == 1 && ne1 > 0 && ne0 > 0);
GGML_ASSERT(type == GGML_TYPE_Q8_0);
GGML_ASSERT(ggml_is_quantized(type));
ggml_type_traits_t traits = ggml_internal_get_type_traits(type);
GGML_ASSERT(traits.to_float != NULL);
const size_t nelements = ne0 * ne1;
float* fdata = malloc(nelements * sizeof(float));
traits.to_float(data, fdata, nelements);
void* reordered_data = NULL;
const rknn_tensor_type inference_type = RKNN_TENSOR_INT8;
if(inference_type == RKNN_TENSOR_FLOAT16) {
reordered_data = malloc(nelements * sizeof(__fp16));
ggml_rknpu2_transposed_to_native_fp16((__fp16*)reordered_data, fdata, ne1, ne0);
}
else if(inference_type == RKNN_TENSOR_INT8) {
reordered_data = malloc(nelements * sizeof(int8_t));
ggml_rknpu2_transposed_to_native_int8((int8_t*)reordered_data, fdata, ne1, ne0);
}
else {
free(fdata);
GGML_ASSERT(0 && "Unsupported inference type");
}
GGML_ASSERT(reordered_data != NULL);
free(fdata);
struct ggml_rknpu2_data_pack* pack = malloc(sizeof(struct ggml_rknpu2_data_pack));
memset(pack, 0, sizeof(struct ggml_rknpu2_data_pack));
pack->ordered_data = reordered_data;
pack->initialized = 0;
pack->type = inference_type;
tensor->extra = pack;
}
void ggml_rknpu2_free_data(struct ggml_tensor * tensor)
{
if(tensor->extra == NULL)
return;
struct ggml_rknpu2_data_pack* pack = tensor->extra;
if(pack->ordered_data != NULL)
free(pack->ordered_data);
if(pack->initialized != 0) {
// HACK: Grab a random kernel to release the memory
GGML_ASSERT(matmul_kernels_count > 0);
struct ggml_rknpu2_matmul_kernel* kernel = &matmul_kernels[0];
rknn_destroy_mem(kernel->matmul_ctx, pack->B);
}
free(pack);
tensor->extra = NULL;
}
void ggml_rknpu2_destroy(void)
{
for(size_t i = 0; i < matmul_kernels_count; i++) {
struct ggml_rknpu2_matmul_kernel* kernel = &matmul_kernels[i];
rknn_destroy_mem(kernel->matmul_ctx, kernel->A);
rknn_destroy_mem(kernel->matmul_ctx, kernel->C);
rknn_matmul_destroy(kernel->matmul_ctx);
}
}