-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprocess_opencv.py
68 lines (55 loc) · 2.35 KB
/
process_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# ped image detection drawn from http://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/
import os
from imutils.object_detection import non_max_suppression
from imutils import paths
import numpy as np
import argparse
import imutils
import cv2
import datetime
#figure out how to use trained svm
# svm_trained = "svm_data.dat"
image_dir = "t3"
# image_dir = "training/INRIAPerson/Train/pos"
# construct the argument parse and parse the arguments - useful for invoking from shell
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--images", required=True, help="path to images directory")
# args = vars(ap.parse_args())
# initialize the HOG descriptor/person detector
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
# loop over the image paths
for imagePath in paths.list_images(image_dir):
# load the image and resize it to (1) reduce detection time
# and (2) improve detection accuracy
print imagePath
image = cv2.imread(imagePath)
print image
image = imutils.resize(image, width=min(1400, image.shape[1]))
orig = image.copy()
# detect people in the image
start = datetime.datetime.now() # sets up a timer
(rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),
padding=(4, 4), scale=1.5)
print("[INFO] detection took: {}s".format(
(datetime.datetime.now() - start).total_seconds()))
# draw the original bounding boxes
for (x, y, w, h) in rects:
cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2)
# apply non-maxima suppression to the bounding boxes using a
# fairly large overlap threshold to try to maintain overlapping
# boxes that are still people
rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects])
pick = non_max_suppression(rects, probs=None, overlapThresh=0.65)
print len(rects)
# draw the final bounding boxes
for (xA, yA, xB, yB) in pick:
cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2)
# show some information on the number of bounding boxes
filename = imagePath[imagePath.rfind("/") + 1:]
print("[INFO] {}: {} original boxes, {} after suppression".format(
filename, len(rects), len(pick)))
# show the output images
cv2.imshow("Before NMS", orig)
cv2.imshow("After NMS", image)
cv2.waitKey(1)