Skip to content

Commit 869c3ad

Browse files
committed
.
1 parent ce9d312 commit 869c3ad

File tree

2 files changed

+5
-26
lines changed

2 files changed

+5
-26
lines changed

deeplearning.rst

+1-22
Original file line numberDiff line numberDiff line change
@@ -587,28 +587,6 @@ Keras Model
587587
verbose=1,
588588
validation_data=(test_images, test_labels))
589589
590-
# Train on 60000 samples, validate on 10000 samples
591-
# Epoch 1/10
592-
# - 1026s - loss: 0.1926 - acc: 0.9418 - val_loss: 0.0499 - val_acc: 0.9834
593-
# Epoch 2/10
594-
# - 995s - loss: 0.0817 - acc: 0.9759 - val_loss: 0.0397 - val_acc: 0.9874
595-
# Epoch 3/10
596-
# - 996s - loss: 0.0633 - acc: 0.9811 - val_loss: 0.0339 - val_acc: 0.9895
597-
# Epoch 4/10
598-
# - 991s - loss: 0.0518 - acc: 0.9836 - val_loss: 0.0302 - val_acc: 0.9909
599-
# Epoch 5/10
600-
# - 996s - loss: 0.0442 - acc: 0.9861 - val_loss: 0.0322 - val_acc: 0.9905
601-
# Epoch 6/10
602-
# - 994s - loss: 0.0395 - acc: 0.9878 - val_loss: 0.0303 - val_acc: 0.9898
603-
# Epoch 7/10
604-
# - 1001s - loss: 0.0329 - acc: 0.9890 - val_loss: 0.0328 - val_acc: 0.9907
605-
# Epoch 8/10
606-
# - 993s - loss: 0.0298 - acc: 0.9907 - val_loss: 0.0336 - val_acc: 0.9916
607-
# Epoch 9/10
608-
# - 998s - loss: 0.0296 - acc: 0.9911 - val_loss: 0.0281 - val_acc: 0.9915
609-
# Epoch 10/10
610-
# - 996s - loss: 0.0252 - acc: 0.9917 - val_loss: 0.0340 - val_acc: 0.9918
611-
612590
score = model.evaluate(test_images, test_labels, verbose=0)
613591
print('Test loss:', score[0])
614592
print('Test accuracy:', score[1])
@@ -622,6 +600,7 @@ Image Augmentation
622600

623601

624602

603+
625604
RNN
626605
----
627606
**Recurrent Neural Network** (RNN). A typical RNN looks like below, where X(t) is input, h(t) is output and A is the neural network which gains information from the previous step in a loop.

learning.rst

+4-4
Original file line numberDiff line numberDiff line change
@@ -163,13 +163,13 @@ Online Notebook
163163
Kaggle's notebook has a dedicated GPU and decent RAM for deep-learning neural networks.
164164

165165
For installation of new packages, check "internet" under "Settings" in the right panel first,
166-
then in the notebook cell, `!pip install package`.
166+
then in the notebook cell, ``!pip install package``.
167167

168168
To read dataset, you can see the file path at the right panel for "Data".
169-
It goes something like '/kaggle/input/competition_folder_name'.
169+
It goes something like ``/kaggle/input/competition_folder_name``.
170170

171171
To download/export the prediction for submission, we can save the prediction like
172-
`df_submission.to_csv(r'/kaggle/working/submisson.csv', index=False)`.
172+
``df_submission.to_csv(r'/kaggle/working/submisson.csv', index=False)``.
173173

174174
To do a direct submission, we can commit the notebook, with the output saving directly as
175-
`submission.csv`, e.g., `df_submission.to_csv(r'submisson.csv', index=False)`.
175+
``submission.csv``, e.g., ``df_submission.to_csv(r'submisson.csv', index=False)``.

0 commit comments

Comments
 (0)