-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
151 lines (109 loc) · 4.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import tensorflow as tf
from tensorflow import keras
import numpy as np
import cv2
from keras.preprocessing.image import img_to_array
import os
import mediapipe as mp
import numpy as np
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
labels = ['Paper', 'Rock', 'Scissors']
model = keras.models.load_model('./Prediction.h5')
hand_classifier = cv2.CascadeClassifier('cascade_9th.xml')
mp_hands = mp.solutions.hands
mp_draw = mp.solutions.drawing_utils
hands = mp_hands.Hands(static_image_mode = False,
max_num_hands = 1,
min_detection_confidence = 0.7,
min_tracking_confidence = 0.8)
cap = cv2.VideoCapture(0)
markov_chain = np.array([np.zeros(3) for i in range(3)])
prev = rounds = idx = 0
flag = False
def return_opp(idx):
if(idx == 0):
return 2
elif(idx == 1):
return 0
elif(idx == 2):
return 1
wc = wp = 0
cnt_idx = np.zeros(3)
while True:
_, frame = cap.read()
frame = cv2.flip(frame, 1)
image_RGB = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image_GRAY = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
res_hands = hands.process(image_RGB)
imgh, imgw, imgc = frame.shape
label_position_player = (50, 100)
label_position_computer = (50, 150)
if res_hands.multi_hand_landmarks:
hand_features = res_hands.multi_hand_landmarks[0]
x1 = y2 = 1e12
x2 = y1 = -1e12
for id, lnd in enumerate(hand_features.landmark):
x, y = int(lnd.x*imgw), int(lnd.y*imgh)
x1 = min(x, x1); y1 = max(y, y1);
x2 = max(x, x2); y2 = min(y, y2)
roi = image_GRAY[y2-20:y1+20, x1-20:x2+20]
try:
if np.sum([roi]) != 0:
roi = cv2.resize(roi, (128, 128), interpolation = cv2.INTER_AREA)
roi = roi.astype('float') / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
pred = model.predict(roi)
if(np.max(pred)>0.6):
cv2.rectangle(frame, (x1-20, y1+20), (x2+20, y2-20),
(255, 255, 255), 2)
idx = np.argmax(pred)
res = labels[idx]
comp_label = return_opp(np.argmax(markov_chain[prev]))
comp = labels[comp_label]
cv2.putText(frame, "Computer: " + comp, label_position_computer,
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2)
cv2.putText(frame, "You: " + res, label_position_player,
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2)
cnt_idx[idx] = cnt_idx[idx]+1
flag = True
else:
cv2.putText(frame, "No Hand Found", (160, 60),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
except Exception as e:
print(e)
# mp_draw.draw_landmarks(frame, hand_features, mp_hands.HAND_CONNECTIONS)
elif flag == True:
rounds+=1
markov_chain[prev][np.argmax(cnt_idx)]+=1
prev = np.argmax(cnt_idx)
flag = False
if(return_opp(np.argmax(cnt_idx)) == comp_label):
wc+=1
elif(return_opp(comp_label) == np.argmax(cnt_idx)):
wp+=1
cnt_idx = np.zeros_like(cnt_idx)
else:
cv2.putText(frame, "No Hand Found", (160, 60),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(frame, f"Round:{rounds+1}", (200, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0,0,0), 2)
cv2.putText(frame,"Player: {} | Computer: {}".format(wp, wc),
(50, 400), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2)
cv2.imshow('Rock Papers Scissors', frame)
key = cv2.waitKey(1)
if key == 27 or key == 113:
break
if rounds == 0:
rounds = 1
for i in range(3):
for j in range(3):
print(markov_chain[i][j], end = " ")
print('\n')
print("Rounds : {}".format(rounds))
print(f"Player win Percentage: {wp/rounds*100}\nComputer win Percentage {wc/rounds*100}")
print(cnt_idx)
cap.release()
cv2.destroyAllWindows()