|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +print("initializing") |
| 4 | + |
| 5 | +import os |
| 6 | +from datasets import DatasetDict, disable_progress_bar |
| 7 | +from datasets.arrow_dataset import Dataset |
| 8 | +from transformers.utils import logging |
| 9 | +from transformers import GPT2Config, GPT2LMHeadModel |
| 10 | +from transformers import AutoTokenizer |
| 11 | +# https://huggingface.co/docs/transformers/en/main_classes/data_collator |
| 12 | +from transformers import DataCollatorForLanguageModeling, Trainer, TrainingArguments |
| 13 | +from transformers import pipeline |
| 14 | +from difflib import SequenceMatcher |
| 15 | +import torch |
| 16 | + |
| 17 | +os.environ["WANDB_DISABLED"] = "true" |
| 18 | +os.environ["DS_ACCELERATOR"] = "cpu" |
| 19 | +logging.set_verbosity(logging.ERROR) |
| 20 | + |
| 21 | +length = 4 |
| 22 | +input = " ".join(str(i) for i in range(length)) |
| 23 | +print("input:", input) |
| 24 | +input_list = input.split() |
| 25 | + |
| 26 | +disable_progress_bar() |
| 27 | +ds = DatasetDict({ "train": Dataset.from_list([{"text":input}]), |
| 28 | + #Dataset.from_generator(gen), |
| 29 | + "valid": Dataset.from_list([{"text":input}]) |
| 30 | + }) |
| 31 | + |
| 32 | +tokenizer= AutoTokenizer.from_pretrained("gpt2") |
| 33 | + |
| 34 | +tokenizer.pad_token = tokenizer.eos_token |
| 35 | + |
| 36 | +# Tokenize the ds |
| 37 | +def tokenize_function(examples): |
| 38 | + return tokenizer(examples["text"], max_length=length) |
| 39 | + |
| 40 | +tokenized_datasets = ds.map(tokenize_function, batched=True, remove_columns=["text"]) |
| 41 | + |
| 42 | +print("model") |
| 43 | +# https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Config |
| 44 | +config = GPT2Config( vocab_size=tokenizer.vocab_size, n_positions=128, n_ctx=128, |
| 45 | + n_embd=256, n_layer=2 * length, n_head=length) |
| 46 | + |
| 47 | + |
| 48 | +model = GPT2LMHeadModel(config) |
| 49 | + |
| 50 | +dc = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) |
| 51 | + |
| 52 | +# https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments |
| 53 | +training_args = TrainingArguments( |
| 54 | + run_name="test", |
| 55 | + num_train_epochs=4, |
| 56 | + output_dir="./results", |
| 57 | + overwrite_output_dir=True, |
| 58 | + eval_strategy="steps", |
| 59 | +) |
| 60 | + |
| 61 | +trainer = Trainer( |
| 62 | + model=model, |
| 63 | + args=training_args, |
| 64 | + train_dataset=tokenized_datasets["train"], |
| 65 | + eval_dataset=tokenized_datasets["valid"], |
| 66 | + data_collator=dc, |
| 67 | +) |
| 68 | +print("training") |
| 69 | +t = trainer.train() |
| 70 | +print(t) |
| 71 | + |
| 72 | +print("inference") |
| 73 | +gen = pipeline("text-generation", model=model, tokenizer=tokenizer) |
| 74 | +output = gen(input_list[0], max_length=length, num_return_sequences=1)[0]['generated_text'] |
| 75 | +print(SequenceMatcher(None, input, output).ratio(), output) |
| 76 | +tokenizer.save_pretrained('trained_model') |
| 77 | + |
| 78 | +# https://github.com/ggml-org/llama.cpp/issues/11345 |
| 79 | +model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight.clone().detach()) |
| 80 | +model.tie_word_embeddings = False |
| 81 | + |
| 82 | +model.save_pretrained('trained_model') |
0 commit comments