|
1 |
| -// Time: O(n * h) |
2 |
| -// Space: O(n * h) |
| 1 | +// Time: O(n) |
| 2 | +// Space: O(n) |
3 | 3 |
|
4 | 4 | /**
|
5 | 5 | * Definition for a binary tree node.
|
|
10 | 10 | * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
|
11 | 11 | * };
|
12 | 12 | */
|
| 13 | + |
| 14 | +namespace std{ |
| 15 | + namespace |
| 16 | + { |
| 17 | + |
| 18 | + // Code from boost |
| 19 | + // Reciprocal of the golden ratio helps spread entropy |
| 20 | + // and handles duplicates. |
| 21 | + // See Mike Seymour in magic-numbers-in-boosthash-combine: |
| 22 | + // http://stackoverflow.com/questions/4948780 |
| 23 | + |
| 24 | + template <class T> |
| 25 | + inline void hash_combine(std::size_t& seed, T const& v) |
| 26 | + { |
| 27 | + seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed<<6) + (seed>>2); |
| 28 | + } |
| 29 | + |
| 30 | + // Recursive template code derived from Matthieu M. |
| 31 | + template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1> |
| 32 | + struct HashValueImpl |
| 33 | + { |
| 34 | + static void apply(size_t& seed, Tuple const& tuple) |
| 35 | + { |
| 36 | + HashValueImpl<Tuple, Index-1>::apply(seed, tuple); |
| 37 | + hash_combine(seed, std::get<Index>(tuple)); |
| 38 | + } |
| 39 | + }; |
| 40 | + |
| 41 | + template <class Tuple> |
| 42 | + struct HashValueImpl<Tuple,0> |
| 43 | + { |
| 44 | + static void apply(size_t& seed, Tuple const& tuple) |
| 45 | + { |
| 46 | + hash_combine(seed, std::get<0>(tuple)); |
| 47 | + } |
| 48 | + }; |
| 49 | + } |
| 50 | + |
| 51 | + template <typename ... TT> |
| 52 | + struct hash<std::tuple<TT...>> |
| 53 | + { |
| 54 | + size_t |
| 55 | + operator()(std::tuple<TT...> const& tt) const |
| 56 | + { |
| 57 | + size_t seed = 0; |
| 58 | + HashValueImpl<std::tuple<TT...> >::apply(seed, tt); |
| 59 | + return seed; |
| 60 | + } |
| 61 | + |
| 62 | + }; |
| 63 | +} |
| 64 | + |
13 | 65 | class Solution {
|
| 66 | +public: |
| 67 | + vector<TreeNode*> findDuplicateSubtrees(TreeNode* root) { |
| 68 | + unordered_map<int, vector<TreeNode *>> trees; |
| 69 | + unordered_map<tuple<int, int, int>, int> lookup; |
| 70 | + getid(root, &lookup, &trees); |
| 71 | + |
| 72 | + vector<TreeNode *> result; |
| 73 | + for (const auto& kvp : trees) { |
| 74 | + if (kvp.second.size() > 1) { |
| 75 | + result.emplace_back(kvp.second[0]); |
| 76 | + } |
| 77 | + } |
| 78 | + return result; |
| 79 | + } |
| 80 | + |
| 81 | +private: |
| 82 | + int getid(TreeNode *root, |
| 83 | + unordered_map<tuple<int, int, int>, int> *lookup, |
| 84 | + unordered_map<int, vector<TreeNode *>> *trees) { |
| 85 | + auto node_id = 0; |
| 86 | + if (root) { |
| 87 | + const auto& data = make_tuple(root->val, |
| 88 | + getid(root->left, lookup, trees), |
| 89 | + getid(root->right, lookup, trees)); |
| 90 | + if (!lookup->count(data)) { |
| 91 | + (*lookup)[data] = lookup->size() + 1; |
| 92 | + } |
| 93 | + node_id = (*lookup)[data]; |
| 94 | + (*trees)[node_id].emplace_back(root); |
| 95 | + } |
| 96 | + return node_id; |
| 97 | + } |
| 98 | +}; |
| 99 | + |
| 100 | +// Time: O(n * h) |
| 101 | +// Space: O(n * h) |
| 102 | +class Solution2 { |
14 | 103 | public:
|
15 | 104 | vector<TreeNode*> findDuplicateSubtrees(TreeNode* root) {
|
16 | 105 | unordered_map<string, int> lookup;
|
|
0 commit comments