|
| 1 | +// Time: O(n) |
| 2 | +// Space: O(n) |
| 3 | + |
| 4 | +class Solution { |
| 5 | +public: |
| 6 | + vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) { |
| 7 | + const auto n = nums.size(); |
| 8 | + vector<int> accu = {0}; |
| 9 | + for (const auto& num : nums) { |
| 10 | + accu.emplace_back(accu.back() + num); |
| 11 | + } |
| 12 | + |
| 13 | + vector<int> left_pos(n); |
| 14 | + for (int i = k, total = accu[k] - accu[0]; i < n; ++i) { |
| 15 | + if (accu[i + 1] - accu[i + 1 - k] > total) { |
| 16 | + left_pos[i] = i + 1 - k; |
| 17 | + total = accu[i + 1] - accu[i + 1 - k]; |
| 18 | + } else { |
| 19 | + left_pos[i] = left_pos[i - 1]; |
| 20 | + } |
| 21 | + } |
| 22 | + |
| 23 | + vector<int> right_pos(n, n - k); |
| 24 | + for (int i = n - k - 1, total = accu[n] - accu[n - k]; i >= 0; --i) { |
| 25 | + if (accu[i + k] - accu[i] > total) { |
| 26 | + right_pos[i] = i; |
| 27 | + total = accu[i + k] - accu[i]; |
| 28 | + } else { |
| 29 | + right_pos[i] = right_pos[i + 1]; |
| 30 | + } |
| 31 | + } |
| 32 | + |
| 33 | + vector<int> result(3); |
| 34 | + for (int i = k, max_sum = 0; i <= n - 2 * k; ++i) { |
| 35 | + auto left = left_pos[i - 1], right = right_pos[i + k]; |
| 36 | + auto total = (accu[i + k] - accu[i]) + |
| 37 | + (accu[left + k] - accu[left]) + |
| 38 | + (accu[right + k] - accu[right]); |
| 39 | + if (total > max_sum) { |
| 40 | + max_sum = total; |
| 41 | + result = {left, i, right}; |
| 42 | + } |
| 43 | + } |
| 44 | + return result; |
| 45 | + } |
| 46 | +}; |
0 commit comments