-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_setup.py
54 lines (41 loc) · 1.63 KB
/
data_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
def load_cifar10(batch_size):
"""
Parmeters:
batch_size
Return:
trainloader
testloader
classes (Tuple) : 10 classes
"""
# Transform Data
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# Load training set, download if not downloaded
trainset = datasets.CIFAR10(root='./data/cifar10', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
# Load test set, download if not downloaded
testset = datasets.CIFAR10(root='./data/cifar10', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
# Classes in CIFAR10 dataset
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
return trainloader, testloader, classes
if __name__ == '__main__':
# Load data with batch size of 4
trainloader, testloader, classes = load_cifar10(4)
# Get next batch
image, label = next(iter(trainloader))
# Plot the image
plt.imshow(image[0].permute(1, 2, 0))
plt.title(classes[label[0]])
plt.axis(False)
plt.show()