-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult(matlab).c
175 lines (150 loc) · 5.45 KB
/
result(matlab).c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//Analysis Type - Classification
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <stdlib.h>
#include <windows.h>
#include "mex.h"
#define DLLEXPORT __declspec(dllexport)
DLLEXPORT void StatNeuroResultsRAVM(double* input, int* ind, double* m);
void __cdecl mexFunction ( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] );
double k_fdm_2_MLP_7_5_4_input_hidden_weights[5][7]=
{
{-2.83527958159302e-1, 2.89934657209722e-1, 4.93363880849622e-1, -8.75724651080467e-1, 3.86000525771560e-1, 1.82146865118403e-1, -2.05279873575766e-2 },
{2.97812861471928e-1, 1.42301799139965e-1, -7.58626265889516e-1, -7.82614296791588e-1, -1.02063543314337, 6.38774255373127e-1, 4.20075850130804e-1 },
{3.43415056829368e-1, 3.84781629695125e-3, -6.33110359044437e-2, 5.02148106000819e-1, -1.27475623675377e-1, 1.60987105441913e-1, 4.26474307659468e-1 },
{-4.36753073296557e-1, 1.76403838052590e-1, 1.71362386921746, -2.27483908688549e-1, 2.11207987348687, -8.89472360928051e-1, -5.05838802786523e-1 },
{-2.02800528826114e-1, 1.48588755981540e-1, 4.63190700047228e-1, -1.70823353038845e-1, 2.77028658832428e-1, -2.42203737060510e-1, -2.03067848177509e-1 }
};
double k_fdm_2_MLP_7_5_4_hidden_bias[5]={ -6.73686816815229e-2, 7.22496824891226e-2, 4.54283879143130e-1, -4.08285902648488e-1, -9.38365269570421e-2 };
double k_fdm_2_MLP_7_5_4_hidden_output_wts[4][5]=
{
{-3.30540876410893e-1, 8.03483723644652e-1, 6.22202553803680e-2, -3.75709843965768e-1, 9.71766437797953e-2 },
{-9.12979067767539e-2, -1.14577174142916, -1.63050195202422e-1, 8.56127075917471e-1, 4.10048928154471e-2 },
{-4.03744658113511e-1, 1.71055867370482, -6.75479951013817e-2, -1.90478492220575, -3.15517074957689e-1 },
{6.50730589902806e-1, 6.09347120302843e-2, -8.06634675624268e-1, 4.55050895033275e-1, 2.67965376280203e-1 }
};
double k_fdm_2_MLP_7_5_4_output_bias[4]={ -4.05667237897579, -2.27344473043056, 6.65589660176576e-1, -7.41574398847519e-1 };
double k_fdm_2_MLP_7_5_4_max_input[7]={ 9.70000000000000e+1, 3.10000000000000e+1, 1.00000000000000e+2, 2.50000000000000e+1, 6.70000000000000e+1, 1.87000000000000e+2, 1.05000000000000e+2 };
double k_fdm_2_MLP_7_5_4_min_input[7]={ 6.10000000000000e+1, 1.30000000000000e+1, 6.40000000000000e+1, 7.00000000000000, 1.80000000000000e+1, 1.60000000000000e+2, 5.00000000000000e+1 };
double k_fdm_2_MLP_7_5_4_input[7];
double k_fdm_2_MLP_7_5_4_hidden[5];
double k_fdm_2_MLP_7_5_4_output[4];
void k_fdm_2_MLP_7_5_4_ScaleInputs(double* input, double minimum, double maximum, int size)
{
double delta;
long i;
for(i=0; i<size; i++)
{
delta = (maximum-minimum)/(k_fdm_2_MLP_7_5_4_max_input[i]-k_fdm_2_MLP_7_5_4_min_input[i]);
input[i] = minimum - delta*k_fdm_2_MLP_7_5_4_min_input[i]+ delta*input[i];
}
}
double k_fdm_2_MLP_7_5_4_logistic(double x)
{
if(x > 100.0) x = 1.0;
else if (x < -100.0) x = 0.0;
else x = 1.0/(1.0+exp(-x));
return x;
}
void k_fdm_2_MLP_7_5_4_Normalise(double out[],long length)
{
long i, j;
double sum = 0.0;
for(i=0; i<length; i++)
{
if(out[i]>100)
{
out[i] = 1.0;
j = i;
for(i=0; i<length; i++)
{
if(i!=j) out[i] = 0.0;
}
break;
}
else out[i] = exp(out[i]);
}
for(i=0; i<length; i++)
{
sum += out[i];
}
for(i=0; i<length; i++)
{
out[i] = out[i]/sum;
}
}
void k_fdm_2_MLP_7_5_4_ComputeFeedForwardSignals(double* MAT_INOUT,double* V_IN,double* V_OUT, double* V_BIAS,int size1,int size2,int layer)
{
int row,col;
for(row=0;row < size2; row++)
{
V_OUT[row]=0.0;
for(col=0;col<size1;col++)V_OUT[row]+=(*(MAT_INOUT+(row*size1)+col)*V_IN[col]);
V_OUT[row]+=V_BIAS[row];
if(layer==1) V_OUT[row] = k_fdm_2_MLP_7_5_4_logistic(V_OUT[row]);
}
}
void k_fdm_2_MLP_7_5_4_RunNeuralNet_Classification ()
{
k_fdm_2_MLP_7_5_4_ComputeFeedForwardSignals((double*)k_fdm_2_MLP_7_5_4_input_hidden_weights,k_fdm_2_MLP_7_5_4_input,k_fdm_2_MLP_7_5_4_hidden,k_fdm_2_MLP_7_5_4_hidden_bias,7, 5,0);
k_fdm_2_MLP_7_5_4_ComputeFeedForwardSignals((double*)k_fdm_2_MLP_7_5_4_hidden_output_wts,k_fdm_2_MLP_7_5_4_hidden,k_fdm_2_MLP_7_5_4_output,k_fdm_2_MLP_7_5_4_output_bias,5, 4,1);
}
/*
Тело (реализация) заявленного выше прототипа функции.
Производит некие действия и возвращает результат
*/
DLLEXPORT void StatNeuroResultsRAVM(double* input, int* ind, double* m)
{
int i=0;
int j=0;
*m=3.e-300;
for(j = 0; j <= 6; j++)
{
k_fdm_2_MLP_7_5_4_input[i] = input[i];
}
k_fdm_2_MLP_7_5_4_ScaleInputs(k_fdm_2_MLP_7_5_4_input,0,1,7);
k_fdm_2_MLP_7_5_4_RunNeuralNet_Classification();
//Normalise output if output activation is not Softmax;
k_fdm_2_MLP_7_5_4_Normalise(k_fdm_2_MLP_7_5_4_output,4);
for(i=0;i<4;i++)
{
if(*m<k_fdm_2_MLP_7_5_4_output[i])
{
*m=k_fdm_2_MLP_7_5_4_output[i];
*ind=i+1;
}
}
return;
}
void /*__cdecl*/ mexFunction ( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )
{
int i;
int ok = 1;
double *d;
memset(plhs, nlhs, 0);
// magic
if (7 == nrhs) {
double m = 0.0;
int ind = 0;
double *input = malloc(sizeof *input * nlhs);
if (NULL == input) return;
for (i = 0; i < nrhs; i++) {
ok = 0;
if (mxIsDouble(prhs[i])) {
ok = 1;
d = mxGetPr(prhs[i]);
input[i] = *d;
}
}
if (ok) {
StatNeuroResultsRAVM(input, &ind, &m);
//if (good)
plhs[0] = mxCreateDoubleScalar(m);
plhs[1] = mxCreateDoubleScalar(ind+1);
//nlhs = 2;
}
free(input);
}
return;
}