Skip to content

Commit 03eaa2f

Browse files
committed
chore(vscode): update tasks.json and notes
1 parent 222f3eb commit 03eaa2f

File tree

2 files changed

+26
-26
lines changed

2 files changed

+26
-26
lines changed

.vscode/tasks.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
"type": "shell",
77
"command": "python",
88
"args": [
9-
"${workspaceFolder}/scripts/content/fix_matrix.py",
9+
"${workspaceFolder}/scripts/content/fix_mathjax.py",
1010
"--file",
1111
"${file}"
1212
],

notes/2025-06-04-operational-amplifiers-en.md

Lines changed: 25 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -74,13 +74,13 @@ Op-amps are typically used in closed-loop configurations with negative feedback
7474
- The non-inverting input (+) is grounded (0 V).
7575
- A feedback resistor (R_f) connects the output (V_out) to the inverting input.
7676
- **Key Equations**:
77-
- Voltage gain: \( A_v = -\frac{R_f}{R_1} \)
78-
- Output voltage: \( V_{out} = -\frac{R_f}{R_1} \cdot V_{in} \)
79-
- Input impedance: Approximately \( R_1 \).
77+
- Voltage gain: \\( A_v = -\frac{R_f}{R_1} \\)
78+
- Output voltage: \\( V_{out} = -\frac{R_f}{R_1} \cdot V_{in} \\)
79+
- Input impedance: Approximately \\( R_1 \\).
8080
- **Virtual Short**: The inverting input is at 0 V (same as the grounded non-inverting input).
81-
- **Example**: For \( R_1 = 10 \, \text{k}\Omega \), \( R_f = 20 \, \text{k}\Omega \), and \( V_{in} = 1 \, \text{V} \):
82-
- Gain: \( A_v = -\frac{20k}{10k} = -2 \)
83-
- Output: \( V_{out} = -2 \cdot 1 = -2 \, \text{V} \).
81+
- **Example**: For \\( R_1 = 10 \, \text{k}\Omega \\), \\( R_f = 20 \, \text{k}\Omega \\), and \\( V_{in} = 1 \, \text{V} \\):
82+
- Gain: \\( A_v = -\frac{20k}{10k} = -2 \\)
83+
- Output: \\( V_{out} = -2 \cdot 1 = -2 \, \text{V} \\).
8484
- **Applications**: Audio amplifiers, signal inversion, summing amplifiers.
8585

8686
#### **Non-Inverting Amplifier**
@@ -89,13 +89,13 @@ Op-amps are typically used in closed-loop configurations with negative feedback
8989
- Input signal (V_in) is applied to the non-inverting input (+).
9090
- Feedback resistor (R_f) connects the output to the inverting input (-), with resistor R_1 from the inverting input to ground.
9191
- **Key Equations**:
92-
- Voltage gain: \( A_v = 1 + \frac{R_f}{R_1} \)
93-
- Output voltage: \( V_{out} = \left(1 + \frac{R_f}{R_1}\right) \cdot V_{in} \)
92+
- Voltage gain: \\( A_v = 1 + \frac{R_f}{R_1} \\)
93+
- Output voltage: \\( V_{out} = \left(1 + \frac{R_f}{R_1}\right) \cdot V_{in} \\)
9494
- Input impedance: Very high (due to the non-inverting input).
9595
- **Virtual Short**: The inverting input voltage equals V_in (due to feedback).
96-
- **Example**: For \( R_1 = 10 \, \text{k}\Omega \), \( R_f = 30 \, \text{k}\Omega \), and \( V_{in} = 1 \, \text{V} \):
97-
- Gain: \( A_v = 1 + \frac{30k}{10k} = 4 \)
98-
- Output: \( V_{out} = 4 \cdot 1 = 4 \, \text{V} \).
96+
- **Example**: For \\( R_1 = 10 \, \text{k}\Omega \\), \\( R_f = 30 \, \text{k}\Omega \\), and \\( V_{in} = 1 \, \text{V} \\):
97+
- Gain: \\( A_v = 1 + \frac{30k}{10k} = 4 \\)
98+
- Output: \\( V_{out} = 4 \cdot 1 = 4 \, \text{V} \\).
9999
- **Applications**: Signal buffering, voltage scaling.
100100

101101
#### **Integrator**
@@ -105,15 +105,15 @@ Op-amps are typically used in closed-loop configurations with negative feedback
105105
- A capacitor (C) is placed in the feedback path (from output to inverting input).
106106
- Non-inverting input is grounded.
107107
- **Key Equations**:
108-
- Output voltage: \( V_{out} = -\frac{1}{R \cdot C} \int V_{in}(t) \, dt \)
108+
- Output voltage: \\( V_{out} = -\frac{1}{R \cdot C} \int V_{in}(t) \, dt \\)
109109
- The output is the negative integral of the input.
110110
- **Virtual Short**: Inverting input is at 0 V.
111111
- **Practical Considerations**:
112112
- A resistor in parallel with the capacitor may be added to limit low-frequency gain and prevent saturation.
113113
- Limited by op-amp’s slew rate and capacitor leakage.
114-
- **Example**: For \( R = 10 \, \text{k}\Omega \), \( C = 1 \, \mu\text{F} \), and constant \( V_{in} = 1 \, \text{V} \):
115-
- Output: \( V_{out} = -\frac{1}{10k \cdot 1\mu} \int 1 \, dt = -100 \cdot t \, \text{V/s} \).
116-
- After 1 ms: \( V_{out} = -0.1 \, \text{V} \).
114+
- **Example**: For \\( R = 10 \, \text{k}\Omega \\), \\( C = 1 \, \mu\text{F} \\), and constant \\( V_{in} = 1 \, \text{V} \\):
115+
- Output: \\( V_{out} = -\frac{1}{10k \cdot 1\mu} \int 1 \, dt = -100 \cdot t \, \text{V/s} \\).
116+
- After 1 ms: \\( V_{out} = -0.1 \, \text{V} \\).
117117
- **Applications**: Analog computers, signal processing, low-pass filters.
118118

119119
#### **Differentiator**
@@ -123,13 +123,13 @@ Op-amps are typically used in closed-loop configurations with negative feedback
123123
- A resistor (R) is placed in the feedback path.
124124
- Non-inverting input is grounded.
125125
- **Key Equations**:
126-
- Output voltage: \( V_{out} = -R \cdot C \cdot \frac{dV_{in}}{dt} \)
126+
- Output voltage: \\( V_{out} = -R \cdot C \cdot \frac{dV_{in}}{dt} \\)
127127
- The output is the negative derivative of the input.
128128
- **Virtual Short**: Inverting input is at 0 V.
129129
- **Practical Considerations**:
130130
- Susceptible to high-frequency noise amplification; a small resistor in series with the input capacitor can stabilize the circuit.
131-
- **Example**: For \( R = 10 \, \text{k}\Omega \), \( C = 1 \, \mu\text{F} \), and \( V_{in} = t \, \text{V} \) (linear ramp):
132-
- Output: \( V_{out} = -10k \cdot 1\mu \cdot \frac{d(t)}{dt} = -0.01 \, \text{V} \).
131+
- **Example**: For \\( R = 10 \, \text{k}\Omega \\), \\( C = 1 \, \mu\text{F} \\), and \\( V_{in} = t \, \text{V} \\) (linear ramp):
132+
- Output: \\( V_{out} = -10k \cdot 1\mu \cdot \frac{d(t)}{dt} = -0.01 \, \text{V} \\).
133133
- **Applications**: Edge detection, high-pass filters.
134134

135135
---
@@ -164,20 +164,20 @@ Op-amps can operate in nonlinear modes (without negative feedback or with specif
164164
1. **Square Wave Generator (Astable Multivibrator)**:
165165
- **Circuit**: Uses an op-amp with positive feedback through resistors and a capacitor in the negative feedback path.
166166
- **Operation**: The capacitor charges and discharges between threshold voltages set by the resistors, causing the output to switch between supply rails.
167-
- **Frequency**: Determined by the RC time constant, e.g., \( f = \frac{1}{2 \cdot R \cdot C \cdot \ln(3)} \) (approximate for some configurations).
168-
- **Example**: For \( R = 10 \, \text{k}\Omega \), \( C = 0.1 \, \mu\text{F} \), the frequency is roughly 1 kHz.
167+
- **Frequency**: Determined by the RC time constant, e.g., \\( f = \frac{1}{2 \cdot R \cdot C \cdot \ln(3)} \\) (approximate for some configurations).
168+
- **Example**: For \\( R = 10 \, \text{k}\Omega \\), \\( C = 0.1 \, \mu\text{F} \\), the frequency is roughly 1 kHz.
169169
- **Applications**: Clock signals, pulse generation.
170170

171171
2. **Triangle Wave Generator**:
172172
- **Circuit**: Typically combines a square wave generator (comparator with positive feedback) with an integrator.
173173
- **Operation**: The square wave drives the integrator, producing a linear ramp (triangle wave).
174-
- **Example**: A 1 kHz square wave fed into an integrator with \( R = 10 \, \text{k}\Omega \), \( C = 0.1 \, \mu\text{F} \) produces a 1 kHz triangle wave.
174+
- **Example**: A 1 kHz square wave fed into an integrator with \\( R = 10 \, \text{k}\Omega \\), \\( C = 0.1 \, \mu\text{F} \\) produces a 1 kHz triangle wave.
175175
- **Applications**: Test signals, pulse-width modulation (PWM).
176176

177177
3. **Sine Wave Generator (Wien Bridge Oscillator)**:
178178
- **Circuit**: Uses positive feedback through a frequency-selective network (resistors and capacitors) and negative feedback for amplitude stabilization.
179-
- **Operation**: Oscillates at a frequency where the phase shift is zero, e.g., \( f = \frac{1}{2 \pi R C} \).
180-
- **Example**: For \( R = 1.59 \, \text{k}\Omega \), \( C = 0.01 \, \mu\text{F} \), the frequency is ~10 kHz.
179+
- **Operation**: Oscillates at a frequency where the phase shift is zero, e.g., \\( f = \frac{1}{2 \pi R C} \\).
180+
- **Example**: For \\( R = 1.59 \, \text{k}\Omega \\), \\( C = 0.01 \, \mu\text{F} \\), the frequency is ~10 kHz.
181181
- **Applications**: Audio signal generation, testing.
182182

183183
---
@@ -193,8 +193,8 @@ Op-amps can operate in nonlinear modes (without negative feedback or with specif
193193
### **Example Application: Audio Preamplifier**
194194
Let’s design a simple inverting audio preamplifier:
195195
- **Requirements**: Amplify a 50 mV audio signal to 500 mV (gain = 10).
196-
- **Circuit**: Inverting amplifier with \( R_1 = 10 \, \text{k}\Omega \), \( R_f = 100 \, \text{k}\Omega \).
197-
- **Calculation**: \( A_v = -\frac{100k}{10k} = -10 \), \( V_{out} = -10 \cdot 0.05 = -0.5 \, \text{V} \).
196+
- **Circuit**: Inverting amplifier with \\( R_1 = 10 \, \text{k}\Omega \\), \\( R_f = 100 \, \text{k}\Omega \\).
197+
- **Calculation**: \\( A_v = -\frac{100k}{10k} = -10 \\), \\( V_{out} = -10 \cdot 0.05 = -0.5 \, \text{V} \\).
198198
- **Considerations**: Use a low-noise op-amp (e.g., OPA2134), add a coupling capacitor to block DC, and ensure the power supply supports the signal range (e.g., ±5 V).
199199

200200
---

0 commit comments

Comments
 (0)