-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
214 lines (161 loc) · 6.63 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from collections import Counter, defaultdict
# from scipy.optimize import linear_sum_assignment as linear_assignment
# from sklearn.utils.linear_assignment_ import linear_assignment
from scipy.optimize import linear_sum_assignment
from blanc import blanc, tuple_to_metric
def f1(p_num, p_den, r_num, r_den, beta=1):
p = 0 if p_den == 0 else p_num / float(p_den)
r = 0 if r_den == 0 else r_num / float(r_den)
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)
class CorefEvaluator(object):
def __init__(self):
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)]
self.all_gm = 1e-6
self.recalled_gm = 1e-6
self.all_gm_by_width = defaultdict((int))
self.recalled_gm_by_width = defaultdict((int))
self.all_gm_by_depth = defaultdict((int))
self.recalled_gm_by_depth = defaultdict((int))
self.c_tuple = [0,0,0]
self.n_tuple = [0,0,0]
def update(
self, predicted, gold, mention_to_predicted, mention_to_gold,
metainfo_gms, recalled_gms # all_gm, recalled_gm
):
for e in self.evaluators:
e.update(predicted, gold, mention_to_predicted, mention_to_gold)
self.all_gm += len(metainfo_gms)
self.recalled_gm += len(recalled_gms & set(metainfo_gms.keys()))
for x, v in metainfo_gms.items():
self.all_gm_by_width[v['width']] += 1
self.all_gm_by_depth[v['depth']] += 1
if x in recalled_gms:
self.recalled_gm_by_width[v['width']] += 1
self.recalled_gm_by_depth[v['depth']] += 1
c_tuple, n_tuple = blanc(gold, predicted)
for i in range(3):
self.c_tuple[i] += c_tuple[i]
for i in range(3):
self.n_tuple[i] += n_tuple[i]
def get_all(self):
all_res = {}
name_dict = {0: "muc", 1: "b_cubed", 2: "ceafe"}
for i, e in enumerate(self.evaluators):
all_res[name_dict[i]+"_f1"] = e.get_f1()
all_res[name_dict[i]+"_p"] = e.get_precision()
all_res[name_dict[i]+"_r"] = e.get_recall()
return all_res
def get_f1(self):
for e in self.evaluators:
print("f:", e.get_f1())
return sum(e.get_f1() for e in self.evaluators) / len(self.evaluators)
def get_recall(self):
for e in self.evaluators:
print("r:", e.get_recall())
return sum(e.get_recall() for e in self.evaluators) / len(self.evaluators)
def get_precision(self):
for e in self.evaluators:
print("p:", e.get_precision())
return sum(e.get_precision() for e in self.evaluators) / len(self.evaluators)
def get_prf(self):
blanc_scores = tuple_to_metric(self.c_tuple, self.n_tuple)
blanc_p, blanc_r, blanc_f = tuple(0.5*(a+b) for (a,b) in zip(*blanc_scores))
print("all_gm", self.all_gm)
print(self.all_gm_by_width)
print(self.recalled_gm_by_width)
print(self.all_gm_by_depth)
print(self.recalled_gm_by_depth)
return self.get_precision(), self.get_recall(), self.get_f1(), self.recalled_gm / self.all_gm, (blanc_p, blanc_r, blanc_f)
class Evaluator(object):
def __init__(self, metric, beta=1):
self.p_num = 0
self.p_den = 0
self.r_num = 0
self.r_den = 0
self.metric = metric
self.beta = beta
def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
if self.metric == ceafe:
pn, pd, rn, rd = self.metric(predicted, gold)
else:
pn, pd = self.metric(predicted, mention_to_gold)
rn, rd = self.metric(gold, mention_to_predicted)
self.p_num += pn
self.p_den += pd
self.r_num += rn
self.r_den += rd
def get_f1(self):
return f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta)
def get_recall(self):
return 0 if self.r_num == 0 else self.r_num / float(self.r_den)
def get_precision(self):
return 0 if self.p_num == 0 else self.p_num / float(self.p_den)
def get_prf(self):
return self.get_precision(), self.get_recall(), self.get_f1()
def get_counts(self):
return self.p_num, self.p_den, self.r_num, self.r_den
def evaluate_documents(documents, metric, beta=1):
evaluator = Evaluator(metric, beta=beta)
for document in documents:
evaluator.update(document)
return evaluator.get_precision(), evaluator.get_recall(), evaluator.get_f1()
def b_cubed(clusters, mention_to_gold):
num, dem = 0, 0
for c in clusters:
# if len(c) == 1:
# continue
gold_counts = Counter()
correct = 0
for m in c:
if m in mention_to_gold:
gold_counts[tuple(mention_to_gold[m])] += 1
for c2, count in gold_counts.items():
# if len(c2) != 1:
correct += count * count
num += correct / float(len(c))
dem += len(c)
return num, dem
def muc(clusters, mention_to_gold):
tp, p = 0, 0
for c in clusters:
p += len(c) - 1
tp += len(c)
linked = set()
for m in c:
if m in mention_to_gold:
linked.add(mention_to_gold[m])
else:
tp -= 1
tp -= len(linked)
return tp, p
def phi4(c1, c2):
return 2 * len([m for m in c1 if m in c2]) / float(len(c1) + len(c2))
def ceafe(clusters, gold_clusters):
clusters = [c for c in clusters] # if len(c) != 1]
scores = np.zeros((len(gold_clusters), len(clusters)))
for i in range(len(gold_clusters)):
for j in range(len(clusters)):
scores[i, j] = phi4(gold_clusters[i], clusters[j])
matching = linear_sum_assignment(-scores)
matching = np.transpose(np.asarray(matching))
similarity = sum(scores[matching[:,0], matching[:,1]])
return similarity, len(clusters), similarity, len(gold_clusters)
def lea(clusters, mention_to_gold):
num, dem = 0, 0
for c in clusters:
if len(c) == 1:
continue
common_links = 0
all_links = len(c) * (len(c) - 1) / 2.0
for i, m in enumerate(c):
if m in mention_to_gold:
for m2 in c[i + 1:]:
if m2 in mention_to_gold and mention_to_gold[m] == mention_to_gold[m2]:
common_links += 1
num += len(c) * common_links / float(all_links)
dem += len(c)
return num, dem