-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_training.py
213 lines (156 loc) · 7.61 KB
/
model_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from ultil import *
import tensorflow as tf
from keras.models import Model
from keras.regularizers import l2,l1
from keras.callbacks import ModelCheckpoint,EarlyStopping
from tensorflow.keras.layers import Dense, Dropout, Flatten, Activation, Embedding,Bidirectional,Masking,LSTM,BatchNormalization,Input
from keras_self_attention import SeqSelfAttention
from keras_multi_head import MultiHead
import os
steps = 50 #定义timestep; define timestep
#数据组地址定义; Define the data directory
source_dir = '/mnt/lxr/datasets/Fujitsu/binary'
X_train_dir = os.path.join(source_dir,'X_training.csv')
y_train_dir = os.path.join(source_dir,'y_training.csv')
X_test_dir = os.path.join(source_dir,'X_testing.csv')
y_test_dir = os.path.join(source_dir,'y_testing.csv')
#读取数据; Read the data
X_train,y_train,X_test,y_test,num_classes = load_dataset(X_train_dir,y_train_dir,X_test_dir,y_test_dir,steps,0,136,True)
#数据处理; Feature engineering
X_train,y_train = binary_smote(X_train,y_train) #对训练集进行SMOTE
X_train = masked_normalization(X_train) #对数据集进行统一化
X_test = masked_normalization(X_test) #对数据集进行统一化
X_train = PCA_1(X_train,dim) #对数据集进行降维
X_test = PCA_1(X_test,dim) #对数据集进行降维
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=666) #对训练集进行训练集验证集分割
def opt_select(optimizer, learning_rate):
"""
为模型选择优化器
Selection of optimizer
:param optimizer:优化器名字
:param learning_rate: 学习率
:return:
"""
if optimizer == 'Adam':
adamopt = tf.keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
return adamopt
elif optimizer == 'SGD':
SGDopt = tf.keras.optimizers.SGD(lr=learning_rate)
return SGDopt
elif optimizer == 'RMS':
RMSopt = tf.keras.optimizers.RMSprop(lr=learning_rate, rho=0.9, epsilon=1e-6)
return RMSopt
else:
print('undefined optimizer')
def residual_attention_model(X_train, y_train, X_val, y_val, X_test, num_classes, dropout=0.2, batch_size=68,
learning_rate=0.0001, epochs=20, optimizer='Adam'):
"""residual attention 模型
residual attention model
"""
lstm_unit = 16
inputs = Input(shape=(X_train.shape[1], X_train.shape[2]))
x = Masking(mask_value=0.0)(inputs)
x2 = SeqSelfAttention(attention_type=SeqSelfAttention.ATTENTION_TYPE_MUL,
attention_activation='sigmoid')(x)
x = x + x2
x = Bidirectional(LSTM(lstm_unit, dropout=dropout, return_sequences=True))(x)
x = Flatten()(x)
output = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=inputs, outputs=output)
print(model.summary())
optimizer = opt_select(optimizer, learning_rate)
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=optimizer)
callbacks = [EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='min'),
ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_loss', mode='min')]
hist = model.fit(X_train,
y_train,
shuffle=False,
batch_size=batch_size,
epochs=epochs,
callbacks=callbacks,
verbose=0,
validation_data=(X_val, y_val))
model.load_weights(filepath = '.mdl_wts.hdf5')
model.save('/mnt/lxr/SER/paper/fiji_binary.h5')
yhat = model.predict(X_test)
return hist, yhat
def Multiplcative_self_attention(X_train, y_train, X_val, y_val, X_test, num_classes, dropout=0.2, batch_size=68,
learning_rate=0.0001, epochs=20, optimizer='Adam'):
"""多层self_attention;
Multiplicative self_attention model
"""
lstm_unit = 256
model = tf.keras.models.Sequential()
model.add(Masking(mask_value=0.0, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Bidirectional(LSTM(lstm_unit, dropout=dropout,return_sequences=True)))
model.add(Bidirectional(LSTM(lstm_unit, dropout=dropout,return_sequences=True)))
model.add(SeqSelfAttention(
attention_type=SeqSelfAttention.ATTENTION_TYPE_MUL,
attention_activation='sigmoid',
kernel_regularizer=keras.regularizers.l2(1e-2),
use_attention_bias=False,
name='Attention',
))
model.add(keras.layers.Flatten())
model.add(Dense(num_classes, activation='softmax'))
print(model.summary())
opt = opt_select(optimizer, learning_rate)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
callbacks = [EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='min'),
ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_loss', mode='min')]
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
callbacks=callbacks,
validation_data=(X_val, y_val),
verbose=0
)
model.load_weights(filepath='.mdl_wts.hdf5')
model.save('/mnt/lxr/SER/paper/fiji_binary.h5')
yhat = model.predict(X_test)
return history, yhat
def MultiHead_self_attention(X_train, y_train, X_val, y_val, X_test, num_classes, dropout=0.5, batch_size=68,
learning_rate=0.0001, epochs=20, optimizer='Adam'):
"""Multi-Head attention 模型"""
lstm_unit = 256
model = tf.keras.models.Sequential()
model.add(Masking(mask_value=0.0, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(MultiHead(Bidirectional(LSTM(units=lstm_unit, dropout=dropout)), layer_num=10, name='Multi-LSTMs'))
model.add(SeqSelfAttention(
attention_type=SeqSelfAttention.ATTENTION_TYPE_MUL,
attention_activation='sigmoid',
kernel_regularizer=keras.regularizers.l2(1e-2),
use_attention_bias=False,
name='Attention',
))
model.add(keras.layers.Flatten())
model.add(Dense(num_classes, activation='softmax'))
print(model.summary())
opt = opt_select(optimizer, learning_rate)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
callbacks = [EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='min'),
ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_loss', mode='min')]
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
callbacks=callbacks,
validation_data=(X_val, y_val),
verbose=0
)
model.load_weights(filepath='.mdl_wts.hdf5')
model.save('/mnt/lxr/SER/paper/fiji_binary.h5')
yhat = model.predict(X_test)
return history, yhat
#模型参数定义; Define the hyperparameters
num_classes = num_classes
batch_size = 256
epochs = 20
learning_rate = 0.001
#训练模型; Model training
history,y_pred = MultiHead_self_attention(X_train, y_train, X_val, y_val,X_test,num_classes=8,dropout=0.2, batch_size=64, learning_rate=learning_rate,epochs=epochs,optimizer='Adam')
#训练结果 # plot the report and confusion matrix and acc loss curves
plots(history,y_test,y_pred)