-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathaudio_train.py
346 lines (281 loc) · 13.3 KB
/
audio_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# coding: utf-8
# author: [email protected]
r"""Train audio model."""
from __future__ import print_function
import sys
sys.path.append('./audio')
import os
import numpy as np
import natsort
import shutil
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# get_ipython().run_line_magic('matplotlib', 'inline')
import tensorflow as tf
from tensorflow.python.platform import gfile
from sklearn.metrics import accuracy_score
import audio_params as params
import audio_util as util
from audio_records import RecordsParser
from audio_model import define_audio_slim
from audio_feature_extractor import VGGishExtractor
tf.logging.set_verbosity(tf.logging.DEBUG)
flags = tf.app.flags
flags.DEFINE_string(
'vggish_ckpt_dir', params.VGGISH_CHECKPOINT_DIR,
'Path to the VGGish checkpoint file.')
flags.DEFINE_string(
'audio_ckpt_dir', params.AUDIO_CHECKPOINT_DIR,
'Path to the audio checkpoint file.')
flags.DEFINE_string(
'train_name', params.AUDIO_TRAIN_NAME,
'Directory name for audio checkpoint file to save, i.e. audio checkpoint'
'file will save to `audio_ckpt_dir/train_name`.')
flags.DEFINE_string(
'wavfile_parent_dir', params.WAV_FILE_PARENT_DIR,
"Path to wav file's parent directory, each subdirectory is a class of files.")
flags.DEFINE_string(
'records_dir', params.TF_RECORDS_DIR,
"Path to the TF records file's parent directory.")
flags.DEFINE_bool(
'restore_if_possible', True,
"Restore variables from checkpoint if checkpoint is exists.")
FLAGS = flags.FLAGS
MAX_NUM_PER_CLASS = 2 ** 27 - 1 # ~134M
train_records_path = os.path.join(FLAGS.records_dir,
params.TF_RECORDS_TRAIN_NAME)
test_records_path = os.path.join(FLAGS.records_dir,
params.TF_RECORDS_TEST_NAME)
val_records_path = os.path.join(FLAGS.records_dir,
params.TF_RECORDS_VAL_NAME)
vggish_ckpt_path = os.path.join(FLAGS.vggish_ckpt_dir,
params.VGGISH_CHECKPOINT_NAME)
vggish_pca_path = os.path.join(FLAGS.vggish_ckpt_dir,
params.VGGISH_PCA_PARAMS_NAME)
tensorboard_dir = os.path.join(params.TENSORBOARD_DIR,
FLAGS.train_name)
audio_ckpt_dir = os.path.join(FLAGS.audio_ckpt_dir,
FLAGS.train_name)
util.maybe_create_directory(tensorboard_dir)
util.maybe_create_directory(audio_ckpt_dir)
# backup params
shutil.copy(os.path.join(os.path.dirname(__file__), 'audio_params.py'), audio_ckpt_dir)
def _add_triaining_graph():
with tf.Graph().as_default() as graph:
logits = define_audio_slim(training=True)
tf.summary.histogram('logits', logits)
# define training subgraph
with tf.variable_scope('train'):
labels = tf.placeholder(tf.float32,
shape=[None, params.NUM_CLASSES], name='labels')
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(
logits=logits, labels=labels, name='cross_entropy')
loss = tf.reduce_mean(cross_entropy, name='loss_op')
tf.summary.scalar('loss', loss)
# training
global_step = tf.Variable(0, name='global_step', trainable=False,
collections=[tf.GraphKeys.GLOBAL_VARIABLES,
tf.GraphKeys.GLOBAL_STEP])
optimizer = tf.train.AdamOptimizer(
learning_rate=params.LEARNING_RATE,
epsilon=params.ADAM_EPSILON)
optimizer.minimize(loss, global_step=global_step, name='train_op')
return graph
def _check_vggish_ckpt_exists():
"""check VGGish checkpoint exists or not."""
util.maybe_create_directory(FLAGS.vggish_ckpt_dir)
if not util.is_exists(vggish_ckpt_path):
url = 'https://storage.googleapis.com/audioset/vggish_model.ckpt'
util.maybe_download(url, params.VGGISH_CHECKPOINT_DIR)
if not util.is_exists(vggish_pca_path):
url = 'https://storage.googleapis.com/audioset/vggish_pca_params.npz'
util.maybe_download(url, params.VGGISH_CHECKPOINT_DIR)
def _wav_files_and_labels():
"""Get wav files path and labels as a dict object.
Args:
None
Returns:
result = { label:wav_file_list }
"""
if not util.is_exists(FLAGS.wavfile_parent_dir):
tf.logging.error("Can not find wav files at: {}, or you can download one at "
"https://serv.cusp.nyu.edu/projects/urbansounddataset.".format(
FLAGS.wavfile_parent_dir))
exit(1)
sub_dirs = [x[0] for x in gfile.Walk(FLAGS.wavfile_parent_dir)]
sub_dirs = natsort.natsorted(sub_dirs)
sub_dirs = sub_dirs[1:] # The root directory comes first, so skip it.
wav_files = []
wav_labels = []
for label_idx, sub_dir in enumerate(sub_dirs):
extensions = ['wav']
file_list = []
dir_name = os.path.basename(sub_dir)
if dir_name == FLAGS.wavfile_parent_dir:
continue
if dir_name[0] == '.':
continue
tf.logging.info("Looking for wavs in '" + dir_name + "'")
for extension in extensions:
file_glob = os.path.join(FLAGS.wavfile_parent_dir, dir_name, '*.' + extension)
file_list.extend(gfile.Glob(file_glob))
if not file_list:
tf.logging.warning('No files found')
continue
if len(file_list) < 20:
tf.logging.warning('WARNING: Folder has less than 20 wavs,'
'which may cause issues.')
elif len(file_list) > MAX_NUM_PER_CLASS:
tf.logging.warning(
'WARNING: Folder {} has more than {} wavs. Some wavs will '
'never be selected.'.format(dir_name, MAX_NUM_PER_CLASS))
# label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
wav_files.extend(file_list)
wav_labels.extend([label_idx]*len(file_list))
assert len(wav_files) == len(wav_labels), \
'Length of wav files and wav labels should be in consistent.'
return wav_files, wav_labels
def _create_records():
"""Create audio `train`, `test` and `val` records file."""
tf.logging.info("Create records..")
util.maybe_create_directory(FLAGS.records_dir)
_check_vggish_ckpt_exists()
wav_files, wav_labels = _wav_files_and_labels()
tf.logging.info('Possible labels: {}'.format(set(wav_labels)))
train, test, val = util.train_test_val_split(wav_files, wav_labels)
with VGGishExtractor(vggish_ckpt_path,
vggish_pca_path,
params.VGGISH_INPUT_TENSOR_NAME,
params.VGGISH_OUTPUT_TENSOR_NAME) as ve:
train_x, train_y = train
ve.create_records(train_records_path, train_x, train_y)
test_x, test_y = test
ve.create_records(test_records_path, test_x, test_y)
val_x, val_y = val
ve.create_records(val_records_path, val_x, val_y)
tf.logging.info('Dataset size: Train-{} Test-{} Val-{}'.format(
len(train_y), len(test_y), len(val_y)))
def _get_records_iterator(records_path, batch_size):
"""Get records iterator"""
if not util.is_exists(records_path):
_create_records()
rp = RecordsParser([records_path], params.NUM_CLASSES, feature_shape=None)
return rp.iterator(is_onehot=True, batch_size=batch_size)
def _add_scalar_summary(writer, tag, value, step):
scalar_summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
writer.add_summary(scalar_summary, step)
def main(_):
# initialize all log data containers:
train_loss_per_epoch = []
val_loss_per_epoch = []
# initialize a list containing the 5 best val losses (is used to tell when to
# save a model checkpoint):
best_epoch_losses = [1000, 1000, 1000, 1000, 1000]
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(graph=_add_triaining_graph(), config=sess_config) as sess:
train_iterator, train_batch = _get_records_iterator(train_records_path,
batch_size=params.BATCH_SIZE)
val_iterator, val_batch = _get_records_iterator(val_records_path, batch_size=128)
test_iterator, test_batch = _get_records_iterator(test_records_path, batch_size=128)
# op and tensors
features_tensor = sess.graph.get_tensor_by_name(params.AUDIO_INPUT_TENSOR_NAME)
output_tensor = sess.graph.get_tensor_by_name(params.AUDIO_OUTPUT_TENSOR_NAME)
labels_tensor = sess.graph.get_tensor_by_name('train/labels:0')
global_step_tensor = sess.graph.get_tensor_by_name('train/global_step:0')
loss_tensor = sess.graph.get_tensor_by_name('train/loss_op:0')
train_op = sess.graph.get_operation_by_name('train/train_op')
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(tensorboard_dir, graph=sess.graph)
saver = tf.train.Saver()
init = tf.global_variables_initializer()
sess.run(init)
checkpoint_path = os.path.join(audio_ckpt_dir, params.AUDIO_CHECKPOINT_NAME)
if util.is_exists(checkpoint_path+'.meta') and FLAGS.restore_if_possible:
saver.restore(sess, checkpoint_path)
# training and validation loop
for epoch in range(params.NUM_EPOCHS):
# training loop
train_batch_losses = []
sess.run(train_iterator.initializer)
while True:
try:
# feature: [batch_size, num_features]
# label: [batch_size, num_classes]
tr_features, tr_labels = sess.run(train_batch)
except tf.errors.OutOfRangeError:
break
[num_steps, loss, summaries, _] = sess.run([global_step_tensor, loss_tensor, summary_op, train_op],
feed_dict={features_tensor: tr_features, labels_tensor: tr_labels})
train_batch_losses.append(loss)
summary_writer.add_summary(summaries, num_steps)
print('Epoch {}/{}, Step {}: train loss {}'.format(epoch, params.NUM_EPOCHS, num_steps, loss))
# compute the train epoch loss:
train_epoch_loss = np.mean(train_batch_losses)
# save the train epoch loss:
train_loss_per_epoch.append(train_epoch_loss)
print("train epoch loss: %g" % train_epoch_loss)
# validation loop
val_batch_losses = []
sess.run(val_iterator.initializer)
while True:
try:
val_features, val_labels = sess.run(val_batch)
except tf.errors.OutOfRangeError:
break
[prediction, loss] = sess.run(
[output_tensor, loss_tensor],
feed_dict={features_tensor: val_features, labels_tensor: val_labels})
val_batch_losses.append(loss)
# print('predict shape:', prediction.shape)
# print("Example val loss: {:.5f}".format(loss))
val_loss = np.mean(val_batch_losses)
val_loss_per_epoch.append(val_loss)
print("validation loss: %g" % val_loss)
_add_scalar_summary(summary_writer, 'train/val_loss', val_loss, num_steps) # add to summary
# testing loop
predicted = []
groundtruth = []
sess.run(test_iterator.initializer)
while True:
try:
te_features, te_labels = sess.run(test_batch)
except tf.errors.OutOfRangeError:
break
predictions = sess.run(output_tensor, feed_dict={features_tensor: te_features, labels_tensor: te_labels})
predicted.extend(np.argmax(predictions, axis=1))
groundtruth.extend(np.argmax(te_labels, axis=1))
test_acc = accuracy_score(groundtruth, predicted, normalize=True)
print(f"test_acc: {test_acc}")
_add_scalar_summary(summary_writer, 'train/test_acc', test_acc, num_steps) # add to summary
if val_loss < min(best_epoch_losses): # (if top 5 performance on val:)
# save the model weights to disk:
checkpoint_path2 = os.path.join(audio_ckpt_dir,
'l{loss:.2f}_{name}'.format(loss=val_loss, name=params.AUDIO_CHECKPOINT_NAME))
saver.save(sess, checkpoint_path)
saver.save(sess, checkpoint_path2)
print("checkpoint saved in file: %s" % checkpoint_path)
# update the top 5 val losses:
index = best_epoch_losses.index(min(best_epoch_losses))
best_epoch_losses[index] = val_loss
# plot the training loss vs epoch and save to disk:
plt.figure(1)
plt.plot(train_loss_per_epoch, "k^-")
# plt.plot(train_loss_per_epoch, "k")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("training loss per epoch")
plt.savefig("%s/train_loss_per_epoch.png" % audio_ckpt_dir)
# plt.show()
# plot the val loss vs epoch and save to disk:
plt.figure(2)
plt.plot(val_loss_per_epoch, "k^-")
# plt.plot(val_loss_per_epoch, "k")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("validation loss per epoch")
plt.savefig("%s/val_loss_per_epoch.png" % audio_ckpt_dir)
# plt.show()
if __name__ == '__main__':
tf.app.run()