forked from taschini/crlibm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatan-itanium.c
846 lines (719 loc) · 32 KB
/
atan-itanium.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/*
*this function computes a correctly rounded atan using double-extended arithmetic, FMAs and other dirty tricks
*
* Author : Nicolas Gast, Florent de Dinechin
*
WARNING : This code is dirty and experimental, and remains here for
history. A cleaner, portable version using double-extended arithmetic will be available some day as atan-de.c
For this reason there is only atan_rn so it fails the "make check" for all the other rounding modes
To test within crlibm: (tested with Intel icc compiler version 8.1)
icc -Qoption,cpp,--extended_float_types -IPF_fp_speculationsafe -c atan-itanium.c; mv atan-itanium.o atan_fast.o; make
This file is completely self-contained so that we can change the crlibm infrastructure without bothering maintaining it.
*/
/* WARNING Due to some quantum effect not understood so far,
turning debugging on may change the result */
#define DEBUG 0
typedef __int64 INT64;
typedef signed __int64 SINT64;
typedef unsigned __int64 UINT64;
/* FP register type */
typedef __fpreg L_FLOAT_TYPE;
/* Almost the same as the previous, except exponent field smaller, and morally in memory */
typedef long double LC_FLOAT_TYPE;
/* The double-double-ext type, using registers */
typedef struct __X_FLOAT_TYPE_TAG {
L_FLOAT_TYPE hi,lo; /* order is critical! */
} X_FLOAT_TYPE;
/* The double-double-ext type, in memory */
typedef struct __XC_FLOAT_TYPE_TAG {
LC_FLOAT_TYPE hi,lo; /* order is critical! */
} XC_FLOAT_TYPE;
/* For debugging */
typedef union {
int i[3];
long double d;
} db_ext_number;
typedef enum {
_PC_S = 1 /* single .s */
,_PC_D = 2 /* double .d */
,_PC_NONE = 3 /* dynamic */
} _Asm_pc;
/* Table 1-22: legal getf/setf floating-point register access completers */
typedef enum {
_FR_S = 1 /* single form .s */
,_FR_D = 2 /* double form .d */
,_FR_EXP = 3 /* exponent form .exp */
,_FR_SIG = 4 /* significand form .sig */
} _Asm_fr_access;
/* Table 1-24: legal floating-point FPSR status field completers (.sf) */
typedef enum {
_SF0 = 0 /* FPSR status field 0 .s0 */
,_SF1 = 1 /* FPSR status field 1 .s1 */
,_SF2 = 2 /* FPSR status field 2 .s2 */
,_SF3 = 3 /* FPSR status field 3 .s3 */
} _Asm_sf;
#define print_debug(msg, _z) {\
db_ext_number dbg;\
dbg.d=_z;\
printf(msg);\
printf(" %08x %08x %08x \n", (dbg.i[2]<<16)>>16, dbg.i[1], dbg.i[0]);\
}
#define Add12_ext(s, r, a, b) \
{ L_FLOAT_TYPE _z, _a, _b, _s; \
_a= (a); _b=(b); \
s = (_a + _b); \
_z= ( a - s ); \
r = (_b + _z); }
#define Add22_ext(zh,zl,xh,xl,yh,yl) \
do {\
L_FLOAT_TYPE r,s;\
r = (xh)+(yh);\
s = (xh)-r;\
s+= (yh);\
s+= (yl);\
s+= (xl);\
zh = r+s;\
zl = r - (zh);\
zl+= s;\
} while(0)
#define Mul12_ext(_rh,_rl,_u,_v) \
{ \
_rh = _u*_v; \
_rl = _Asm_fms( 3/*_PC_NONE*/, _u, _v, _rh, 1/*_SF1*/ );\
}
#define Mul22_ext(zh,zl, xh,xl, yh,yl) \
{ \
L_FLOAT_TYPE ph, pl; \
ph = (xh)*(yh); \
pl = _Asm_fms( 3/*_PC_NONE*/, xh, yh, ph, 1/*_SF1*/ );; \
pl = (xh)*(yl) + pl; \
pl = (xl)*(yh) + pl; \
zh = ph+pl; \
zl = ph - zh; \
zl += pl; \
}
#define Div22_ext(zh,zl,xh,xl,yh,yl) \
{ \
L_FLOAT_TYPE _ch,_cl,_uh,_ul; \
_ch=(xh)/(yh); \
Mul12_ext(_uh,_ul,_ch,(yh)); \
_cl=(xh)-_uh; \
_cl -= _ul; \
_cl += (xl); \
_cl -= _ch*(yl); \
_cl /= (yh); \
zh = _ch + _cl; \
zl=(_ch-(zh)); zl += _cl; \
}
#define ULL(bits) 0x##bits##uLL
#if (!defined(EM64T) && defined(__linux__) && defined(IA32))
# define LDOUBLE_ALIGN 12 /* IA32 Linux: 12-byte alignment */
#else
# define LDOUBLE_ALIGN 16 /* EM64T, IA32 Win or IPF Win/Linux: 16-byte alignm\
ent */
#endif
#if (LDOUBLE_ALIGN == 16)
#define _XPD_ ,0x0000,0x0000,0x0000
#else /*12*/
#define _XPD_ ,0x0000
#endif
#define LDOUBLE_HEX(w4,w3,w2,w1,w0) 0x##w0,0x##w1,0x##w2,0x##w3,0x##w4 _XPD_ /*LITTLE_ENDIAN*/
double dde_atan_rn(double x) {
return 0;
}
double atan_rd(double x) {
return 0;
}
double atan_ru(double x) {
return 0;
}
double atan_rz(double x) {
return 0;
}
static const double HALFPI = 1.57079632679489655799898173427209258079528808593750e+00;
#define MIN_REDUCTION_NEEDED ULL(3F89FDF8BCCE533D)
#define A 0
#define B 1
#define ATAN_BHI 0
#define ATAN_BLO 1
#define epsilon 2.04221581890623872536809598138553304900554884091659e-19
#define epsilon_no_red 1.56771350764719825686165002299335165493769973908433e-19
#define TWO_M_64 5.42101086242752217003726400434970855712890625000000e-20
#define TWO_10 1.02400000000000000000000000000000000000000000000000e+03
__declspec(align(16))
static const struct{long long int a; double b;} ab_table[62] = {
{ /*a[0] ~= 1.26914436930661800408e-02 */ ULL(3F89FDF8BCCE533D),
/*b[0] = */ 2.53869765124364009378776785297304741106927394866943e-02},
{ /*a[1] ~= 3.80906929270782388369e-02 */ ULL(3FA3809F90CEBC31),
/*b[1] = */ 5.08066978456951506837313559117319528013467788696289e-02},
{ /*a[2] ~= 6.35391122156262234502e-02 */ ULL(3FB0441968FBA526),
/*b[2] = */ 7.62920780032335793530151590857713017612695693969727e-02},
{ /*a[3] ~= 8.90697640843219481662e-02 */ ULL(3FB6CD46ABCDFA25),
/*b[3] = */ 1.01876371166982934712841313285025535151362419128418e-01},
{ /*a[4] ~= 1.14716138034642060814e-01 */ ULL(3FBD5E096D2EA546),
/*b[4] = */ 1.27593346472767293908745500630175229161977767944336e-01},
{ /*a[5] ~= 1.40512327929006382604e-01 */ ULL(3FC1FC4ED691E891),
/*b[5] = */ 1.53477468508642272970732278736250009387731552124023e-01},
{ /*a[6] ~= 1.66493216120905490981e-01 */ ULL(3FC54FA6531F610B),
/*b[6] = */ 1.79564085612852891715718328669026959687471389770508e-01},
{ /*a[7] ~= 1.92694666476959805056e-01 */ ULL(3FC8AA380550EAF1),
/*b[7] = */ 2.05889628199359991933548030829115305095911026000977e-01},
{ /*a[8] ~= 2.19153728611415840590e-01 */ ULL(3FCC0D3AB8975BD9),
/*b[8] = */ 2.32491819536184141092860500066308304667472839355469e-01},
{ /*a[9] ~= 2.45908855876056406352e-01 */ ULL(3FCF79F0FEE46885),
/*b[9] = */ 2.59409901651160901270287695297156460583209991455078e-01},
{ /*a[10] ~= 2.73000139926648314534e-01 */ ULL(3FD178D5943274CA),
/*b[10] = */ 2.86684879348826082701151563014718703925609588623047e-01},
{ /*a[11] ~= 3.00469565029600954026e-01 */ ULL(3FD33AE4B2CFB5F7),
/*b[11] = */ 3.14359785700871030567071784389554522931575775146484e-01},
{ /*a[12] ~= 3.28361285690481766972e-01 */ ULL(3FD503DF0DD40A5B),
/*b[12] = */ 3.42479972833279300292730340515845455229282379150391e-01},
{ /*a[13] ~= 3.56721931693259067415e-01 */ ULL(3FD6D4883998DD14),
/*b[13] = */ 3.71093432391343347465095803272561170160770416259766e-01},
{ /*a[14] ~= 3.85600945252912822931e-01 */ ULL(3FD8ADAF964ABFA5),
/*b[14] = */ 4.00251150738601846335029676993144676089286804199219e-01},
{ /*a[15] ~= 4.15050955725992373816e-01 */ ULL(3FDA9031E241114E),
/*b[15] = */ 4.30007504761513281721363455289974808692932128906250e-01},
{ /*a[16] ~= 4.45128198220858643198e-01 */ ULL(3FDC7CFAFB78B41D),
/*b[16] = */ 4.60420705138676944478959285333985462784767150878906e-01},
{ /*a[17] ~= 4.75892983535655022698e-01 */ ULL(3FDE7507D82B9DC6),
/*b[17] = */ 4.91553295129659728601723145402502268552780151367188e-01},
{ /*a[18] ~= 5.07410228170177493351e-01 */ ULL(3FE03CB45FF4B2AB),
/*b[18] = */ 5.23472714391912563591802154405741021037101745605469e-01},
{ /*a[19] ~= 5.39750054761637805872e-01 */ ULL(3FE145A1E826E4EA),
/*b[19] = */ 5.56251939105489867642972967587411403656005859375000e-01},
{ /*a[20] ~= 5.72988475252136329570e-01 */ ULL(3FE255EBED462BAC),
/*b[20] = */ 5.89970211851368997457711884635500609874725341796875e-01},
{ /*a[21] ~= 6.07208171494496387417e-01 */ ULL(3FE36E3FD4CDD9AC),
/*b[21] = */ 6.24713877348479162954220100800739601254463195800781e-01},
{ /*a[22] ~= 6.42499390954343656748e-01 */ ULL(3FE48F5AE1FB2991),
/*b[22] = */ 6.60577343433393693317157158162444829940795898437500e-01},
{ /*a[23] ~= 6.78960978813340497734e-01 */ ULL(3FE5BA0C5FE86E27),
/*b[23] = */ 6.97664190728041089251121320558013394474983215332031e-01},
{ /*a[24] ~= 7.16701572306941533027e-01 */ ULL(3FE6EF3822C19A5D),
/*b[24] = */ 7.36088459496464064812926153535954654216766357421875e-01},
{ /*a[25] ~= 7.55840988781748695010e-01 */ ULL(3FE82FD970F967BD),
/*b[25] = */ 7.75976148518263131315109148999908939003944396972656e-01},
{ /*a[26] ~= 7.96511846049556065643e-01 */ ULL(3FE97D0669351A0D),
/*b[26] = */ 8.17466968767843527032823658373672515153884887695312e-01},
{ /*a[27] ~= 8.38861462565995493716e-01 */ ULL(3FEAD7F3FE730FCD),
/*b[27] = */ 8.60716404767067566616844942473107948899269104003906e-01},
{ /*a[28] ~= 8.83054096327761096527e-01 */ ULL(3FEC41FAAA0A733E),
/*b[28] = */ 9.05898149317818313086547732382314279675483703613281e-01},
{ /*a[29] ~= 9.29273595909162105525e-01 */ ULL(3FEDBC9BFAEEEADF),
/*b[29] = */ 9.53206993785724487899813084368361160159111022949219e-01},
{ /*a[30] ~= 9.77726555752981254442e-01 */ ULL(3FEF498933AC790A),
/*b[30] = */ 1.00286227737052557884567249857354909181594848632812e+00},
{ /*a[31] ~= 1.02864609206350806308e+00 */ ULL(3FF075559AC922B4),
/*b[31] = */ 1.05511202646791502068879253783961758017539978027344e+00},
{ /*a[32] ~= 1.08229638730567912228e+00 */ ULL(3FF151160440E8D3),
/*b[32] = */ 1.11023795151925819268967643438372761011123657226562e+00},
{ /*a[33] ~= 1.13897819300824741364e+00 */ ULL(3FF23941329D3DD8),
/*b[33] = */ 1.16856151675095110142876819736557081341743469238281e+00},
{ /*a[34] ~= 1.19903553596580987055e+00 */ ULL(3FF32F3FE2DB7094),
/*b[34] = */ 1.23045136228081597451478046423289924860000610351562e+00},
{ /*a[35] ~= 1.26286394722716532198e+00 */ ULL(3FF434B0D38A35D7),
/*b[35] = */ 1.29633244442242001603915468876948580145835876464844e+00},
{ /*a[36] ~= 1.33092063388866265448e+00 */ ULL(3FF54B736F41F96D),
/*b[36] = */ 1.36669737760087572908673791971523314714431762695312e+00},
{ /*a[37] ~= 1.40373715148086145849e+00 */ ULL(3FF675B5165CA5E1),
/*b[37] = */ 1.44212062317890032936418265308020636439323425292969e+00},
{ /*a[38] ~= 1.48193532552453321547e+00 */ ULL(3FF7B601D0DEA3C6),
/*b[38] = */ 1.52327639603630871079076314345002174377441406250000e+00},
{ /*a[39] ~= 1.56624743831976717041e+00 */ ULL(3FF90F5979506F51),
/*b[39] = */ 1.61096147803441858137318831722950562834739685058594e+00},
{ /*a[40] ~= 1.65754207708184630948e+00 */ ULL(3FFA854AD74CF791),
/*b[40] = */ 1.70612458293084490179580825497396290302276611328125e+00},
{ /*a[41] ~= 1.75685758736121174681e+00 */ ULL(3FFC1C16B3972246),
/*b[41] = */ 1.80990457885083300126893846027087420225143432617188e+00},
{ /*a[42] ~= 1.86544587781964938190e+00 */ ULL(3FFDD8DDC6DB1831),
/*b[42] = */ 1.92368085119253517945026032975874841213226318359375e+00},
{ /*a[43] ~= 1.98483051718814034750e+00 */ ULL(3FFFC1DDA4F6D032),
/*b[43] = */ 2.04914055707593512067887786542996764183044433593750e+00},
{ /*a[44] ~= 2.11688487740990979279e+00 */ ULL(4000EF6156AEFAF2),
/*b[44] = */ 2.18836977316091063627823132264893501996994018554688e+00},
{ /*a[45] ~= 2.26393888595347935033e+00 */ ULL(40021C8BFD9A80C1),
/*b[45] = */ 2.34397906437763481335423421114683151245117187500000e+00},
{ /*a[46] ~= 2.42892740222016626128e+00 */ ULL(40036E717D67269C),
/*b[46] = */ 2.51927965826279764982587039412464946508407592773438e+00},
{ /*a[47] ~= 2.61560046981161264128e+00 */ ULL(4004ECBFF069F1E4),
/*b[47] = */ 2.71853573297491069027387311507482081651687622070312e+00},
{ /*a[48] ~= 2.82882779840766906527e+00 */ ULL(4006A170780169B7),
/*b[48] = */ 2.94733416149008720097413061012048274278640747070312e+00},
{ /*a[49] ~= 3.07505072362971616974e+00 */ ULL(400899B4319C3F02),
/*b[49] = */ 3.21314087722892072207514502224512398242950439453125e+00},
{ /*a[50] ~= 3.36297230191158715455e+00 */ ULL(400AE75E05B0834A),
/*b[50] = */ 3.52616384863255349912947167467791587114334106445312e+00},
{ /*a[51] ~= 3.70464601821196143254e+00 */ ULL(400DA31D739BD0E3),
/*b[51] = */ 3.90073973345466518125590482668485492467880249023438e+00},
{ /*a[52] ~= 4.11726034471856573100e+00 */ ULL(401078131886BC57),
/*b[52] = */ 4.35765668014056828383218089584261178970336914062500e+00},
{ /*a[53] ~= 4.62619989820137847648e+00 */ ULL(4012813A8BCE2241),
/*b[53] = */ 4.92824409985376998832862227573059499263763427734375e+00},
{ /*a[54] ~= 5.27059285056349616385e+00 */ ULL(401515164ACECE78),
/*b[54] = */ 5.66202526987798027136022938066162168979644775390625e+00},
{ /*a[55] ~= 6.11406930017863578891e+00 */ ULL(401874CE9526FAB9),
/*b[55] = */ 6.64216890962962569489036468439735472202301025390625e+00},
{ /*a[56] ~= 7.26750136287798241547e+00 */ ULL(401D11EBE094C913),
/*b[56] = */ 8.01990986231011859786121931392699480056762695312500e+00},
{ /*a[57] ~= 8.94284159107796650204e+00 */ ULL(4021E2BC220DFA19),
/*b[57] = */ 1.01020964280653942068965989165008068084716796875000e+01},
{ /*a[58] ~= 1.16023240149353498339e+01 */ ULL(40273463D0337C49),
/*b[58] = */ 1.36206610885392880305744256475009024143218994140625e+01},
{ /*a[59] ~= 1.64826377753716631495e+01 */ ULL(40307B8E26350916),
/*b[59] = */ 2.08587363260064613257327437167987227439880371093750e+01},
{ /*a[60] ~= 2.83859754493341325216e+01 */ ULL(403C62CF497BF2F2),
/*b[60] = */ 4.43908820444562195461912779137492179870605468750000e+01},
{ /*a[61] ~= 1.01699461607316896213e+02 */ ULL(40596CC3FA9E0EF4),
/*b[61] = */ 8.27932424540746438879068591631948947906494140625000e+01}
};
#define atanb_table ((const XC_FLOAT_TYPE *)_atanb_table)
__declspec(align(16)) static const unsigned short _atanb_table[] = {
/*atan_b[0] ~= 2.5381524664e-02*/
LDOUBLE_HEX(3FF9, CFEC, EA4B, 4FCB, 5DFD),
LDOUBLE_HEX(BFB7, CBBA, 8342, F523, 8BE7),
/*atan_b[1] ~= 5.0763049304e-02*/
LDOUBLE_HEX(3FFA, CFEC, EA49, B131, 647C),
LDOUBLE_HEX(3FB6, D38B, A5E1, 4DEF, A6BD),
/*atan_b[2] ~= 7.6144573921e-02*/
LDOUBLE_HEX(3FFB, 9BF1, AFB6, 0F03, 5D53),
LDOUBLE_HEX(3FB8, EF7C, 871F, DC70, BCA9),
/*atan_b[3] ~= 1.0152609851e-01*/
LDOUBLE_HEX(3FFB, CFEC, EA46, 78CC, AECA),
LDOUBLE_HEX(BFB7, DCB7, 3BED, 3BD7, 633C),
/*atan_b[4] ~= 1.2690762308e-01*/
LDOUBLE_HEX(3FFC, 81F4, 126B, 0C0A, B24C),
LDOUBLE_HEX(3FB8, 9C93, 50C6, 8748, 202B),
/*atan_b[5] ~= 1.5228914763e-01*/
LDOUBLE_HEX(3FFC, 9BF1, AFB2, 77C1, F1F3),
LDOUBLE_HEX(BFBB, 9D89, 6B54, 2B43, C3D3),
/*atan_b[6] ~= 1.7767067216e-01*/
LDOUBLE_HEX(3FFC, B5EF, 4CF9, 8121, 27D9),
LDOUBLE_HEX(BFBB, D8AB, 134C, C337, 1424),
/*atan_b[7] ~= 2.0305219666e-01*/
LDOUBLE_HEX(3FFC, CFEC, EA40, 29FE, 3D0C),
LDOUBLE_HEX(BFBA, 964C, 23A5, 78A9, 286C),
/*atan_b[8] ~= 2.2843372114e-01*/
LDOUBLE_HEX(3FFC, E9EA, 8786, 746E, CBDE),
LDOUBLE_HEX(3FBB, 95CE, 8C74, D4B3, 3D3D),
/*atan_b[9] ~= 2.5381524560e-01*/
LDOUBLE_HEX(3FFD, 81F4, 1266, 3163, 58ED),
LDOUBLE_HEX(3FBB, B292, B8DC, 903F, C86D),
/*atan_b[10] ~= 2.7919677004e-01*/
LDOUBLE_HEX(3FFD, 8EF2, E108, FBCB, 4839),
LDOUBLE_HEX(BFBC, C5E3, D3F8, 42F0, A001),
/*atan_b[11] ~= 3.0457829447e-01*/
LDOUBLE_HEX(3FFD, 9BF1, AFAB, 9AD5, 051A),
LDOUBLE_HEX(3FBC, BE9C, AF21, 45D0, CBC5),
/*atan_b[12] ~= 3.2995981887e-01*/
LDOUBLE_HEX(3FFD, A8F0, 7E4E, 1002, FE3F),
LDOUBLE_HEX(3FB9, ACDF, 4585, 84D5, 7EE8),
/*atan_b[13] ~= 3.5534134325e-01*/
LDOUBLE_HEX(3FFD, B5EF, 4CF0, 5CF3, 3B2F),
LDOUBLE_HEX(BFB9, DAF1, E542, E461, 5C3F),
/*atan_b[14] ~= 3.8072286762e-01*/
LDOUBLE_HEX(3FFD, C2EE, 1B92, 835E, 5241),
LDOUBLE_HEX(3FBC, F450, E872, E8D5, 5B89),
/*atan_b[15] ~= 4.0610439197e-01*/
LDOUBLE_HEX(3FFD, CFEC, EA34, 8516, 3E60),
LDOUBLE_HEX(BFBC, 91DD, F6E6, 0680, E8AD),
/*atan_b[16] ~= 4.3148591630e-01*/
LDOUBLE_HEX(3FFD, DCEB, B8D6, 6405, 31AA),
LDOUBLE_HEX(BFBC, 8502, E09D, 5663, 1B39),
/*atan_b[17] ~= 4.5686744062e-01*/
LDOUBLE_HEX(3FFD, E9EA, 8778, 222C, 48BB),
LDOUBLE_HEX(BFBB, F51E, C2F3, 5A3E, F53D),
/*atan_b[18] ~= 4.8224896492e-01*/
LDOUBLE_HEX(3FFD, F6E9, 5619, C1A2, 5014),
LDOUBLE_HEX(BFBB, E1E1, FABB, 35B7, 64D8),
/*atan_b[19] ~= 5.0763048922e-01*/
LDOUBLE_HEX(3FFE, 81F4, 125D, A249, 1B96),
LDOUBLE_HEX(BFBB, FEB6, 20F5, A80E, ABD8),
/*atan_b[20] ~= 5.3301201350e-01*/
LDOUBLE_HEX(3FFE, 8873, 79AE, 569C, E82C),
LDOUBLE_HEX(BFBD, 9333, CB85, 3253, A31F),
/*atan_b[21] ~= 5.5839353776e-01*/
LDOUBLE_HEX(3FFE, 8EF2, E0FE, FEF4, 22DF),
LDOUBLE_HEX(3FBD, FBF4, E487, 2960, 19F2),
/*atan_b[22] ~= 5.8377506202e-01*/
LDOUBLE_HEX(3FFE, 9572, 484F, 9C7E, 4569),
LDOUBLE_HEX(BFBD, ED41, 6021, 317B, 1548),
/*atan_b[23] ~= 6.0915658627e-01*/
LDOUBLE_HEX(3FFE, 9BF1, AFA0, 3071, E801),
LDOUBLE_HEX(3FBD, C46B, 95C4, B736, D8A5),
/*atan_b[24] ~= 6.3453811052e-01*/
LDOUBLE_HEX(3FFE, A271, 16F0, BC0B, F541),
LDOUBLE_HEX(3FBD, E479, 64B6, 873E, E8BE),
/*atan_b[25] ~= 6.5991963475e-01*/
LDOUBLE_HEX(3FFE, A8F0, 7E41, 408E, DDC6),
LDOUBLE_HEX(3FBD, C200, D1A3, 7D02, 9DAA),
/*atan_b[26] ~= 6.8530115898e-01*/
LDOUBLE_HEX(3FFE, AF6F, E591, BF41, BD98),
LDOUBLE_HEX(3FBC, AB83, 86B7, DBD3, 49B9),
/*atan_b[27] ~= 7.1068268321e-01*/
LDOUBLE_HEX(3FFE, B5EF, 4CE2, 396F, 887A),
LDOUBLE_HEX(3FB9, 93C0, 6F69, 2472, DD13),
/*atan_b[28] ~= 7.3606420743e-01*/
LDOUBLE_HEX(3FFE, BC6E, B432, B066, 2617),
LDOUBLE_HEX(BFBD, C5F2, 72DA, A216, 8845),
/*atan_b[29] ~= 7.6144573166e-01*/
LDOUBLE_HEX(3FFE, C2EE, 1B83, 2575, A17C),
LDOUBLE_HEX(3FBA, FC52, 25AC, D135, 67B0),
/*atan_b[30] ~= 7.8682725588e-01*/
LDOUBLE_HEX(3FFE, C96D, 82D3, 99EF, 4753),
LDOUBLE_HEX(3FBC, E6CB, 9CE5, F7DC, 32EF),
/*atan_b[31] ~= 8.1220878010e-01*/
LDOUBLE_HEX(3FFE, CFEC, EA24, 0F24, C5A3),
LDOUBLE_HEX(BFBB, 9F94, 64A4, 0D49, 77DA),
/*atan_b[32] ~= 8.3759030433e-01*/
LDOUBLE_HEX(3FFE, D66C, 5174, 8667, 5086),
LDOUBLE_HEX(BFBC, E480, 36A7, 98A0, E416),
/*atan_b[33] ~= 8.6297182855e-01*/
LDOUBLE_HEX(3FFE, DCEB, B8C5, 0106, C115),
LDOUBLE_HEX(BFBB, AE5E, 111C, 0925, 5FC1),
/*atan_b[34] ~= 8.8835335278e-01*/
LDOUBLE_HEX(3FFE, E36B, 2015, 8050, B874),
LDOUBLE_HEX(BFBC, 8DD3, E1A9, 67EE, B236),
/*atan_b[35] ~= 9.1373487702e-01*/
LDOUBLE_HEX(3FFE, E9EA, 8766, 058F, C400),
LDOUBLE_HEX(BFBD, 994E, 5D94, 7944, 5BF2),
/*atan_b[36] ~= 9.3911640126e-01*/
LDOUBLE_HEX(3FFE, F069, EEB6, 920A, 8756),
LDOUBLE_HEX(BFBD, F0FC, 830B, 5639, 9FED),
/*atan_b[37] ~= 9.6449792552e-01*/
LDOUBLE_HEX(3FFE, F6E9, 5607, 2702, D403),
LDOUBLE_HEX(BFBD, B0EF, D9DB, FF7A, BBF3),
/*atan_b[38] ~= 9.8987944978e-01*/
LDOUBLE_HEX(3FFE, FD68, BD57, C5B4, F372),
LDOUBLE_HEX(BFBD, 9706, 5831, 4248, 656E),
/*atan_b[39] ~= 1.0152609740e+00*/
LDOUBLE_HEX(3FFF, 81F4, 1254, 37AB, 59C4),
LDOUBLE_HEX(3FBE, C83B, C3BE, 8160, FE56),
/*atan_b[40] ~= 1.0406424983e+00*/
LDOUBLE_HEX(3FFF, 8533, C5FC, 928B, 5DCD),
LDOUBLE_HEX(3FBE, C025, 7DA6, 5435, CDA0),
/*atan_b[41] ~= 1.0660240226e+00*/
LDOUBLE_HEX(3FFF, 8873, 79A4, F40D, D390),
LDOUBLE_HEX(BFBE, BB70, CBE8, FB3B, AA03),
/*atan_b[42] ~= 1.0914055469e+00*/
LDOUBLE_HEX(3FFF, 8BB3, 2D4D, 5CC1, ADB6),
LDOUBLE_HEX(3FBE, 8161, 18FB, A932, 136B),
/*atan_b[43] ~= 1.1167870712e+00*/
LDOUBLE_HEX(3FFF, 8EF2, E0F5, CD31, 1F80),
LDOUBLE_HEX(BFBC, BD96, 57B0, 5730, 7576),
/*atan_b[44] ~= 1.1421685956e+00*/
LDOUBLE_HEX(3FFF, 9232, 949E, 45E1, 3E02),
LDOUBLE_HEX(BFBD, CDB1, 87A1, 5D56, 06EC),
/*atan_b[45] ~= 1.1675501199e+00*/
LDOUBLE_HEX(3FFF, 9572, 4846, C751, B4C7),
LDOUBLE_HEX(BFBD, A1AB, 140B, 2B49, DF68),
/*atan_b[46] ~= 1.1929316443e+00*/
LDOUBLE_HEX(3FFF, 98B1, FBEF, 51FC, 635A),
LDOUBLE_HEX(3FBE, CA64, 3ADC, 86D5, FB02),
/*atan_b[47] ~= 1.2183131687e+00*/
LDOUBLE_HEX(3FFF, 9BF1, AF97, E655, 1527),
LDOUBLE_HEX(3FBE, CA1D, 3262, C2F9, D84C),
/*atan_b[48] ~= 1.2436946931e+00*/
LDOUBLE_HEX(3FFF, 9F31, 6340, 84C9, 33A7),
LDOUBLE_HEX(3FBD, AF23, 2B16, BE75, 8B87),
/*atan_b[49] ~= 1.2690762175e+00*/
LDOUBLE_HEX(3FFF, A271, 16E9, 2DBF, 7CA7),
LDOUBLE_HEX(3FBE, FDDA, 7599, 4DA2, 0F86),
/*atan_b[50] ~= 1.2944577420e+00*/
LDOUBLE_HEX(3FFF, A5B0, CA91, E197, C307),
LDOUBLE_HEX(BFBC, D265, 9307, D567, 08BE),
/*atan_b[51] ~= 1.3198392664e+00*/
LDOUBLE_HEX(3FFF, A8F0, 7E3A, A0AA, A7E2),
LDOUBLE_HEX(3FBE, BE3C, 4D06, 7D11, 0641),
/*atan_b[52] ~= 1.3452207909e+00*/
LDOUBLE_HEX(3FFF, AC30, 31E3, 6B49, 6713),
LDOUBLE_HEX(BFBE, B9DD, 9D13, C459, 6F6C),
/*atan_b[53] ~= 1.3706023154e+00*/
LDOUBLE_HEX(3FFF, AF6F, E58C, 41BD, 9EA8),
LDOUBLE_HEX(BFBD, 802F, 2153, DC49, 3698),
/*atan_b[54] ~= 1.3959838399e+00*/
LDOUBLE_HEX(3FFF, B2AF, 9935, 2449, 1D44),
LDOUBLE_HEX(3FBE, CAFC, 43E2, 3F23, 5075),
/*atan_b[55] ~= 1.4213653645e+00*/
LDOUBLE_HEX(3FFF, B5EF, 4CDE, 1325, B93A),
LDOUBLE_HEX(BFBA, 9155, 4FBC, 9598, FA3D),
/*atan_b[56] ~= 1.4467468891e+00*/
LDOUBLE_HEX(3FFF, B92F, 0087, 0E85, 296B),
LDOUBLE_HEX(3FBE, C76A, DB5B, 6055, 9EA6),
/*atan_b[57] ~= 1.4721284137e+00*/
LDOUBLE_HEX(3FFF, BC6E, B430, 1690, E405),
LDOUBLE_HEX(3FBA, A6CB, 4564, 7FF8, 4121),
/*atan_b[58] ~= 1.4975099383e+00*/
LDOUBLE_HEX(3FFF, BFAE, 67D9, 2B6A, 02AA),
LDOUBLE_HEX(BFBD, B0AE, B984, 420B, 761D),
/*atan_b[59] ~= 1.5228914629e+00*/
LDOUBLE_HEX(3FFF, C2EE, 1B82, 4D29, 2EBE),
LDOUBLE_HEX(BFBE, 9CBD, 26E8, 9FF8, E917),
/*atan_b[60] ~= 1.5482729876e+00*/
LDOUBLE_HEX(3FFF, C62D, CF2B, 7BDE, 8EE3),
LDOUBLE_HEX(BFBE, AF45, EFD8, 2A64, 49A5),
/*atan_b[61] ~= 1.5587186337e+00*/
LDOUBLE_HEX(3FFF, C784, 1799, 9E5D, D2A5),
LDOUBLE_HEX(BFBE, A231, BD90, F170, 34A5),
};
static const long double coef_poly[9][2] = {
{ -3.33333333333333333342368351437379203616728773340583e-01L, 9.03501810404587028364033466367082415937499719525463e-21L},
{ 2.00000000000000000002710505431213761085018632002175e-01L, -2.71050543121376108505536620063805076318847614178820e-21L},
{ -1.42857142857142857140921067549133027796415262855589e-01L, -1.93607530800982934641564128836546985281459293443700e-21L},
{ 1.11111111111111111109605274760436799397211871109903e-01L, 1.50583635067431171387883211317314321885579450456211e-21L},
{ -9.09090909090909090933731867556488737136533018201590e-02L, 0},
{ 7.69230769230769230779655790120052927250071661546826e-02L, 0},
{ -6.66666666666666666698289230030827212658550706692040e-02L, 0},
{ 5.88235294117647058825522430464127765503690170589834e-02L, 0},
{ -5.26315789473684210515616425929419364138084347359836e-02L, 0},
};
extern double atan_rn(double xd) {
unsigned int hx;
double sign;
double u;
double comp;
int i, i1, m;
UINT64 x_val,x_abs,sign_mask;
L_FLOAT_TYPE xe, tmp, bi, atanbhi, xred, xred2,q;
L_FLOAT_TYPE res,reshi,reslo,rn_constant,test;
L_FLOAT_TYPE xred4,tmp2;
L_FLOAT_TYPE a,b,e0,e1,e2,e3,q0,q1,q2,y0,y1,y2,xred2coarse;
L_FLOAT_TYPE C3,C5,C7,C9 ;
x_val = _Asm_getf( _FR_D, xd );
x_abs = (x_val & ULL(7fffffffffffffff));
sign_mask = ((SINT64)x_val >> 63); /* either 00..00 or 11...11 */
/* cast x to a DE register */
if(sign_mask)
xe=-xd;
else
xe=xd;
/* Filter cases */
if (__builtin_expect( x_abs >= ULL(4350000000000000), 0)) { /* x >= 2^54 */
if (xd!=xd )
return xd+xd; /* NaN */
else {/* atan(x) = +/- Pi/2 */
if(sign_mask) return -HALFPI; else return HALFPI;
}
}
else if (__builtin_expect( x_abs < ULL(3E40000000000000), 0))
/* TODO Add stuff to raise inexact flag */
return xd; /* x<2^-27 then atan(x) =~ x */
/* Now there is something to compute*/
/* load polynomial coeffs */
C3=coef_poly[0][0];
C5=coef_poly[1][0];
C7=coef_poly[2][0];
C9=coef_poly[3][0];
if (__builtin_expect(x_abs > MIN_REDUCTION_NEEDED, 0)) /* test if reduction is necessary : */
{
/* 1) Argument reduction : */
/* This constant was found by dichotomy. I am very ashamed */
rn_constant = 1.002;
/* compute i so that a[i] < x < a[i+1] */
if (x_abs>ab_table[61].a)
i=61;
else {
i=31;
if (x_abs < ab_table[i].a) i-= 16;
else i+=16;
if (x_abs < ab_table[i].a) i-= 8;
else i+= 8;
if (x_abs < ab_table[i].a) i-= 4;
else i+= 4;
if (x_abs < ab_table[i].a) i-= 2;
else i+= 2;
if (x_abs < ab_table[i].a) i-= 1;
else i+= 1;
if (x_abs < ab_table[i].a) i-= 1;
}
bi= ab_table[i].b;
atanbhi = atanb_table[i].hi;
/* the dividend and the divisor for the argument reduction */
a = xe-bi; b = 1 + xe * bi;
#if 1
/* now we want to compute (xe - bi )/b as a DE, but
we will need the accurate quotient only later on,
we can start the computation of the polynomial with a much coarser approximation.
Saves 12 cycles.
*/
/* Algo 8.11 in Markstein book */
_Asm_frcpa(&y0, a, b, _SF1);
e0 = 1 - b*y0; q0 = a*y0;
e2 = e0 + e0*e0; e1 = e0*e0;
e3 = e0 + e1*e1; q1 = q0+q0*e2;
xred = q0 + q1*e3; xred2coarse = q1*q1; /* 62 bits in xred, more than enough */
xred2 = xred*xred; xred4 = xred2coarse*xred2coarse;
/*polynom evaluation */
tmp2 = C7 + xred2coarse * C9 ;
/* here we need xred2, xred2coarse loses a lot of precision to win 3 cycles. */
tmp = C3 + xred2 * C5;
q = tmp + xred4 * tmp2;
#else
xred=a/b;
xred2=xred*xred;
xred4=xred2*xred2;
tmp2 = C7 + xred2 * C9 ;
tmp = C3 + xred2 * C5;
q = tmp + xred4 * tmp2;
#endif
tmp = 1+q*xred2;
/* reconstruction : atan(x) = atan(b[i]) + atan(x) */
res = atanbhi+xred*tmp;
/* atan = atanbhi + tmp; with round to double */
reshi = _Asm_fma( _PC_D, xred, tmp, atanbhi, _SF0 );
}
else
/* no reduction needed */
{
/* Polynomial evaluation */
xred2 = xe*xe;
/*poly eval */
xred4=xred2*xred2;
tmp2 = C7 + xred2 * C9 ;
tmp = C3 + xred2 * C5;
q = tmp + xred4 * tmp2;
q *= xred2;
/* compute q*xe+xe with round to double */
res = _Asm_fma( _PC_NONE, q, xe, xe, _SF1 );
reshi = _Asm_fma( _PC_D, q, xe, xe, _SF0 );
}
#if 0 /* To time the first step only */
if(sign_mask)
return -reshi;
else
return reshi;
#endif
#if 1
i1 = _Asm_getf( _FR_SIG, res);
m = i1 & (0xff<<3);
if(__builtin_expect((m!=(0x7f<<3) && m!=(0x80<<3)), 1+1==2)) {
if(sign_mask)
return -reshi;
else
return reshi;
}
#else
/* ROUNDING TEST à la Ziv */
/* This constant was found by dichotomy. I am very ashamed */
rn_constant = 1.01;
reslo = res - reshi;
test=_Asm_fma( _PC_D, reslo, rn_constant, reshi, _SF0 );
if (__builtin_expect(reshi == test, 1+1==2)) {
if(sign_mask)
return -reshi;
else
return reshi;
}
#endif
else {
/******************************************************************/
/* Double-double-extended */
L_FLOAT_TYPE tmphi, tmplo, x0hi, x0lo, xmBihi, xmBilo, Xredhi, Xredlo, Xred2, qhi,qlo, q, Xred2hi,Xred2lo, atanhi,atanlo;
int j;
#if EVAL_PERF
crlibm_second_step_taken++;
#endif
#if DEBUG
printf("Toto\n");
#endif
if (__builtin_expect(x_abs > MIN_REDUCTION_NEEDED, 0)) {/* test if reduction is necessary : */
if(i==61){
Add12_ext( xmBihi , xmBilo , xe , -ab_table[61].b);
}
else {
xmBihi = xe-ab_table[i].b;
xmBilo = 0.0;
}
Mul12_ext(tmphi,tmplo, xe, (ab_table[i].b));
if (xe > 1) /* TODO remplacer par xabs */
Add22_ext(x0hi,x0lo,tmphi,tmplo, 1.0,0.0);
else {
Add22_ext(x0hi , x0lo , 1.0,0.0,tmphi,tmplo);
}
#if 1
Div22_ext(Xredhi, Xredlo, xmBihi , xmBilo , x0hi,x0lo);
#else
Xredhi=1; Xredlo=0; /* to time the Div22*/
#endif
#if DEBUG
printf("i=%d, num=%1.15e den=%1.15e\n",i, (double)xmBihi, (double)x0hi);
printf("Xred=%1.15e\n", (double)Xredhi);
#endif
Xred2 = Xredhi*Xredhi;
Mul22_ext(Xred2hi,Xred2lo,Xredhi,Xredlo,Xredhi, Xredlo);
/*poly eval */
q = (coef_poly[4][0]+Xred2*
(coef_poly[5][0]+Xred2*
(coef_poly[6][0]+Xred2*
(coef_poly[7][0]+
(Xred2*coef_poly[8][0])))));
Mul12_ext(qhi, qlo, q, Xred2);
for(j=3;j>=0;j--)
{
Add22_ext(qhi,qlo, (coef_poly[j][0]), (coef_poly[j][1]), qhi,qlo);
Mul22_ext(qhi,qlo, qhi,qlo, Xred2hi,Xred2lo);
}
Mul22_ext(qhi,qlo, Xredhi,Xredlo, qhi,qlo);
Add22_ext(qhi,qlo, Xredhi,Xredlo, qhi,qlo);
/* reconstruction : atan(x) = atan(b[i]) + atan(x) */
Add22_ext(atanhi,atanlo, atanb_table[i].hi, atanb_table[i].lo, qhi,qlo);
}
else
/* no reduction needed */
{
#if DEBUG
printf("Tata\n");
#endif
/* Polynomial evaluation */
Mul12_ext( Xred2hi,Xred2lo,xe,xe);
/*poly eval - don't take risks, keep plain Horner */
q = coef_poly[8][0];
q = coef_poly[7][0]+Xred2hi*q;
q = coef_poly[6][0]+Xred2hi*q;
q = coef_poly[5][0]+Xred2hi*q;
Add12_ext(qhi,qlo, coef_poly[4][0], Xred2hi*q);
#if DEBUG
printf(" qhi+ql = %1.50Le + %1.50Le\n",(long double)qhi, (long double)qlo);
print_debug("qhi", qhi);
print_debug("qlo", qlo);
#endif
Mul22_ext(qhi,qlo, qhi,qlo, Xred2hi,Xred2lo);
#if DEBUG
printf(" Xred2 = %1.50Le + %1.50Le\n",(long double)Xred2hi, (long double)Xred2lo);
printf(" qhi+ql = %1.50Le + %1.50Le\n",(long double)qhi, (long double)qlo);
print_debug("qhi", qhi);
print_debug("qlo", qlo);
#endif
for(j=3;j>=0;j--)
{
Add22_ext(qhi,qlo, (coef_poly[j][0]), (coef_poly[j][1]), qhi,qlo);
Mul22_ext(qhi,qlo, qhi,qlo, Xred2hi,Xred2lo);
}
Mul22_ext (qhi,qlo, xe,0, qhi,qlo);
#if DEBUG
printf(" qhi+ql = %1.50Le + %1.50Le\n",(long double)qhi, (long double)qlo);
print_debug("qhi", qhi);
print_debug("qlo", qlo);
#endif
/* Now comes the addition sequence proven in the TOMS paper */
Add12_ext(atanhi,atanlo,xe,qhi);
#if DEBUG
print_debug("atanhi", atanhi);
printf(" atan hi+lo %1.50Le + %1.50Le\n",(long double)atanhi, (long double)atanlo);
#endif
atanlo += qlo;
}
#if DEBUG
printf(" atan hi+lo %1.50Le + %1.50Le\n",(long double)atanhi, (long double)atanlo);
printf(" %1.50e + %1.50e\n",(double)atanhi,(double) atanlo);
printf(" %1.50Le\n",(long double)(atanhi + atanlo));
printf(" ");
#endif
if(sign_mask)
res= -(double) (atanhi+atanlo);
else
res= (double) (atanhi+atanlo);
return res;
}
}