@@ -2254,35 +2254,35 @@ func.func @test_sce_mean_3d_log_prob(%arg0: !torch.vtensor<[3,5,2],f32>, %arg1:
2254
2254
// -----
2255
2255
2256
2256
// CHECK-LABEL: func.func @test_resize_sizes_nearest
2257
- func.func @test_resize_sizes_nearest (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,? ,?,?],f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2257
+ func.func @test_resize_sizes_nearest (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[1 , 1 ,?,?],f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2258
2258
%none = torch.constant.none
2259
- // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4, %none_0, %str, %false, %none_0, %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,? ,?,?],f32>
2260
- %0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {torch.onnx.coordinate_transformation_mode = " asymmetric" , torch.onnx.cubic_coeff_a = -7.500000e-01 : f32 , torch.onnx.mode = " nearest" , torch.onnx.nearest_mode = " floor" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,? ,?,?],f32 >
2261
- return %0 : !torch.vtensor <[?,? ,?,?],f32 >
2259
+ // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4, %none_0, %str, %false, %none_0, %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[1,1 ,?,?],f32>
2260
+ %0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {torch.onnx.coordinate_transformation_mode = " asymmetric" , torch.onnx.cubic_coeff_a = -7.500000e-01 : f32 , torch.onnx.mode = " nearest" , torch.onnx.nearest_mode = " floor" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[1 , 1 ,?,?],f32 >
2261
+ return %0 : !torch.vtensor <[1 , 1 ,?,?],f32 >
2262
2262
}
2263
2263
2264
2264
// -----
2265
2265
2266
2266
// CHECK-LABEL: func.func @test_resize_sizes_nearest
2267
- func.func @test_resize_sizes_nearest (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,? ,?,?],f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2267
+ func.func @test_resize_sizes_nearest (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[1 , 1 ,?,?],f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2268
2268
%none = torch.constant.none
2269
2269
// CHECK: %[[STR:.+]] = torch.constant.str "nearest_half_pixel,round_prefer_floor"
2270
- // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4, %none_0, %[[STR]], %false, %none_0, %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,? ,?,?],f32>
2270
+ // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4, %none_0, %[[STR]], %false, %none_0, %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[1,1 ,?,?],f32>
2271
2271
%0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {
2272
2272
torch.onnx.coordinate_transformation_mode = " half_pixel" ,
2273
- torch.onnx.mode = " nearest" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,? ,?,?],f32 >
2274
- return %0 : !torch.vtensor <[?,? ,?,?],f32 >
2273
+ torch.onnx.mode = " nearest" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[1 , 1 ,?,?],f32 >
2274
+ return %0 : !torch.vtensor <[1 , 1 ,?,?],f32 >
2275
2275
}
2276
2276
2277
2277
// -----
2278
2278
2279
2279
// CHECK-LABEL: func.func @test_resize_sizes_linear
2280
- func.func @test_resize_sizes_linear (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,? ,?,?],
2280
+ func.func @test_resize_sizes_linear (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[1 , 1 ,?,?],
2281
2281
f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2282
2282
%none = torch.constant.none
2283
- // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4, %none_0, %str, %false, %none_0, %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,? ,?,?],f32>
2284
- %0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {torch.onnx.mode = " linear" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,? ,?,?],f32 >
2285
- return %0 : !torch.vtensor <[?,? ,?,?],f32 >
2283
+ // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4, %none_0, %str, %false, %none_0, %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[1,1 ,?,?],f32>
2284
+ %0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {torch.onnx.mode = " linear" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[1 , 1 ,?,?],f32 >
2285
+ return %0 : !torch.vtensor <[1 , 1 ,?,?],f32 >
2286
2286
}
2287
2287
2288
2288
// -----
0 commit comments