@@ -2256,7 +2256,7 @@ func.func @test_sce_mean_3d_log_prob(%arg0: !torch.vtensor<[3,5,2],f32>, %arg1:
2256
2256
// CHECK-LABEL: func.func @test_resize_sizes_nearest
2257
2257
func.func @test_resize_sizes_nearest (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,?,?,?],f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2258
2258
%none = torch.constant.none
2259
- // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4 , %none_0 , %str, %false, %none_0 , %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
2259
+ // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %8 , %none_1 , %str, %false, %none_1 , %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
2260
2260
%0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {torch.onnx.coordinate_transformation_mode = " asymmetric" , torch.onnx.cubic_coeff_a = -7.500000e-01 : f32 , torch.onnx.mode = " nearest" , torch.onnx.nearest_mode = " floor" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,?,?,?],f32 >
2261
2261
return %0 : !torch.vtensor <[?,?,?,?],f32 >
2262
2262
}
@@ -2267,7 +2267,7 @@ func.func @test_sce_mean_3d_log_prob(%arg0: !torch.vtensor<[3,5,2],f32>, %arg1:
2267
2267
func.func @test_resize_sizes_nearest (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,?,?,?],f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2268
2268
%none = torch.constant.none
2269
2269
// CHECK: %[[STR:.+]] = torch.constant.str "nearest_half_pixel,round_prefer_floor"
2270
- // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4 , %none_0 , %[[STR]], %false, %none_0 , %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
2270
+ // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %8 , %none_1 , %[[STR]], %false, %none_1 , %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
2271
2271
%0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {
2272
2272
torch.onnx.coordinate_transformation_mode = " half_pixel" ,
2273
2273
torch.onnx.mode = " nearest" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,?,?,?],f32 >
@@ -2280,7 +2280,7 @@ func.func @test_resize_sizes_nearest(%arg0: !torch.vtensor<[1,1,2,4],f32>, %arg1
2280
2280
func.func @test_resize_sizes_linear (%arg0: !torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, %arg1: !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,?,?,?],
2281
2281
f32 > attributes {torch.onnx_meta.ir_version = 7 : si64 , torch.onnx_meta.opset_version = 19 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
2282
2282
%none = torch.constant.none
2283
- // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %4 , %none_0 , %str, %false, %none_0 , %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
2283
+ // CHECK: torch.aten.__interpolate.size_list_scale_list %arg0, %8 , %none_1 , %str, %false, %none_1 , %false : !torch.vtensor<[1,1,2,4],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
2284
2284
%0 = torch.operator " onnx.Resize" (%arg0 , %none , %none , %arg1 ) {torch.onnx.mode = " linear" } : (!torch.vtensor <[1 ,1 ,2 ,4 ],f32 >, !torch.none , !torch.none , !torch.vtensor <[4 ],si64 >) -> !torch.vtensor <[?,?,?,?],f32 >
2285
2285
return %0 : !torch.vtensor <[?,?,?,?],f32 >
2286
2286
}
0 commit comments