-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet_data.py
119 lines (93 loc) · 4.2 KB
/
imagenet_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright 2019 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Small library that points to the ImageNet data set.
Methods of ImagenetData class:
data_files: Returns a python list of all (sharded) data set files.
num_examples_per_epoch: Returns the number of examples in the data set.
num_classes: Returns the number of classes in the data set.
reader: Return a reader for a single entry from the data set.
This file was taken nearly verbatim from the tensorflow/models GitHub repo.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('imagenet_data_dir', '/tmp/imagenet-2012-tfrecord',
"""Path to the ImageNet data, i.e. """
"""TFRecord of Example protos.""")
class ImagenetData(object):
"""A simple class for handling the ImageNet data set."""
def __init__(self, subset):
"""Initialize dataset using a subset and the path to the data."""
assert subset in self.available_subsets(), self.available_subsets()
self.subset = subset
def num_classes(self):
"""Returns the number of classes in the data set."""
return 1000
def num_examples_per_epoch(self):
"""Returns the number of examples in the data set."""
# Bounding box data consists of 615299 bounding boxes for 544546 images.
if self.subset == 'train':
return 1281167
if self.subset == 'validation':
return 50000
def download_message(self):
"""Instruction to download and extract the tarball from Flowers website."""
print('Failed to find any ImageNet %s files'% self.subset)
print('')
print('If you have already downloaded and processed the data, then make '
'sure to set --imagenet_data_dir to point to the directory '
'containing the location of the sharded TFRecords.\n')
print('If you have not downloaded and prepared the ImageNet data in the '
'TFRecord format, you will need to do this at least once. This '
'process could take several hours depending on the speed of your '
'computer and network connection\n')
print('Please see '
'https://github.com/tensorflow/models/blob/master/inception '
'for instructions on how to build the ImageNet dataset using '
'download_and_preprocess_imagenet.\n')
print('Note that the raw data size is 300 GB and the processed data size '
'is 150 GB. Please ensure you have at least 500GB disk space.')
def available_subsets(self):
"""Returns the list of available subsets."""
return ['train', 'validation']
def data_files(self):
"""Returns a python list of all (sharded) data subset files.
Returns:
python list of all (sharded) data set files.
Raises:
ValueError: if there are not data_files matching the subset.
"""
imagenet_data_dir = os.path.expanduser(FLAGS.imagenet_data_dir)
if not tf.gfile.Exists(imagenet_data_dir):
print('%s does not exist!' % (imagenet_data_dir))
exit(-1)
tf_record_pattern = os.path.join(imagenet_data_dir, '%s-*' % self.subset)
data_files = tf.gfile.Glob(tf_record_pattern)
if not data_files:
print('No files found for dataset ImageNet/%s at %s' %
(self.subset, imagenet_data_dir))
self.download_message()
exit(-1)
return data_files
def reader(self):
"""Return a reader for a single entry from the data set.
See io_ops.py for details of Reader class.
Returns:
Reader object that reads the data set.
"""
return tf.TFRecordReader()