Skip to content

Commit 69e48ea

Browse files
committed
增加glm token文件
解决15004问题
1 parent 31cc5b7 commit 69e48ea

File tree

1 file changed

+346
-0
lines changed

1 file changed

+346
-0
lines changed

tokenization_chatglm.py

+346
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,346 @@
1+
"""Tokenization classes for ChatGLM."""
2+
import sys
3+
import unicodedata
4+
from typing import List, Optional, Union
5+
from functools import lru_cache
6+
import os
7+
import collections
8+
import re
9+
10+
from transformers.tokenization_utils import PreTrainedTokenizer
11+
from icetk.text_tokenizer import TextTokenizer
12+
from icetk.utils import auto_create
13+
import icetk.sentencepiece_model_pb2 as sp_model
14+
from transformers.utils import logging
15+
16+
logger = logging.get_logger(__name__)
17+
18+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
19+
"THUDM/chatglm-6b": 2048,
20+
}
21+
22+
23+
class SPTokenizer:
24+
def __init__(
25+
self,
26+
vocab_file,
27+
max_blank_length=80,
28+
byte_fallback=True,
29+
):
30+
assert vocab_file is not None
31+
self.vocab_file = vocab_file
32+
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
33+
self.max_blank_length = max_blank_length
34+
self.byte_fallback = byte_fallback
35+
self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False)
36+
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True)
37+
38+
@staticmethod
39+
def _configure_tokenizer(
40+
text_tokenizer: TextTokenizer,
41+
special_tokens: List[str],
42+
max_blank_length: int,
43+
byte_fallback: bool,
44+
encode_special_tokens=False,
45+
):
46+
# special token
47+
special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE
48+
for token in special_tokens:
49+
text_tokenizer.proto.pieces.append(
50+
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type)
51+
)
52+
# whitespaces
53+
for token in [SPTokenizer.get_tab_token()] + [
54+
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1)
55+
]:
56+
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4))
57+
# byte fallback
58+
if byte_fallback:
59+
text_tokenizer.proto.trainer_spec.byte_fallback = True
60+
for i in range(256):
61+
text_tokenizer.proto.pieces.append(
62+
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6)
63+
)
64+
text_tokenizer.refresh()
65+
66+
def _build_text_tokenizer(self, encode_special_tokens=False):
67+
tokenizer = TextTokenizer(self.vocab_file)
68+
self._configure_tokenizer(
69+
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens
70+
)
71+
return tokenizer
72+
73+
def _get_text_tokenizer(self, encode_special_tokens=False):
74+
if encode_special_tokens:
75+
return self.special_text_tokenizer
76+
else:
77+
return self.text_tokenizer
78+
79+
@staticmethod
80+
def get_blank_token(length: int):
81+
assert length >= 2
82+
return f"<|blank_{length}|>"
83+
84+
@staticmethod
85+
def get_tab_token():
86+
return f"<|tab|>"
87+
88+
@property
89+
def num_image_tokens(self):
90+
return 20000
91+
92+
@property
93+
def num_text_tokens(self):
94+
return self.text_tokenizer.num_tokens
95+
96+
@property
97+
def num_tokens(self):
98+
return self.num_image_tokens + self.num_text_tokens
99+
100+
@staticmethod
101+
def _encode_whitespaces(text: str, max_len: int = 80):
102+
text = text.replace("\t", SPTokenizer.get_tab_token())
103+
for i in range(max_len, 1, -1):
104+
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
105+
return text
106+
107+
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
108+
if linebreak:
109+
text = text.replace("\n", "<n>")
110+
if whitespaces:
111+
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
112+
return text
113+
114+
def encode(
115+
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
116+
) -> List[int]:
117+
"""
118+
@param text: Text to encode.
119+
@param linebreak: Whether to encode newline (\n) in text.
120+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
121+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
122+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
123+
"""
124+
text = self._preprocess(text, linebreak, whitespaces)
125+
if not add_dummy_prefix:
126+
text = "<n>" + text
127+
tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text)
128+
tokens = [x + self.num_image_tokens for x in tmp]
129+
return tokens if add_dummy_prefix else tokens[2:]
130+
131+
def decode(self, text_ids: List[int], special_tokens=False) -> str:
132+
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
133+
text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids)
134+
text = text.replace("<n>", "\n")
135+
text = text.replace(SPTokenizer.get_tab_token(), "\t")
136+
for i in range(2, self.max_blank_length + 1):
137+
text = text.replace(self.get_blank_token(i), " " * i)
138+
return text
139+
140+
def tokenize(
141+
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
142+
) -> List[str]:
143+
"""
144+
@param text: Text to encode.
145+
@param linebreak: Whether to encode newline (\n) in text.
146+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
147+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
148+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
149+
"""
150+
text = self._preprocess(text, linebreak, whitespaces)
151+
if not add_dummy_prefix:
152+
text = "<n>" + text
153+
tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text)
154+
return tokens if add_dummy_prefix else tokens[2:]
155+
156+
def __getitem__(self, x: Union[int, str]):
157+
if isinstance(x, int):
158+
if x < self.num_image_tokens:
159+
return "<image_{}>".format(x)
160+
else:
161+
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
162+
elif isinstance(x, str):
163+
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
164+
return int(x[7:-1])
165+
else:
166+
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
167+
else:
168+
raise ValueError("The key should be str or int.")
169+
170+
171+
class ChatGLMTokenizer(PreTrainedTokenizer):
172+
"""
173+
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
174+
175+
Args:
176+
vocab_file (`str`):
177+
Path to the vocabulary file.
178+
"""
179+
180+
vocab_files_names = {"vocab_file": "ice_text.model"}
181+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
182+
model_input_names = ["input_ids"]
183+
184+
def __init__(
185+
self,
186+
vocab_file,
187+
do_lower_case=False,
188+
remove_space=False,
189+
bos_token='sop',
190+
eos_token='eos',
191+
eop_token='eop',
192+
mask_token='[MASK]',
193+
gmask_token='[gMASK]',
194+
padding_side="left",
195+
**kwargs
196+
) -> None:
197+
super().__init__(
198+
do_lower_case=do_lower_case,
199+
remove_space=remove_space,
200+
padding_side=padding_side,
201+
**kwargs
202+
)
203+
204+
self.do_lower_case = do_lower_case
205+
self.remove_space = remove_space
206+
self.vocab_file = vocab_file
207+
208+
self.bos_token = bos_token
209+
self.eos_token = eos_token
210+
self.eop_token = eop_token
211+
self.mask_token = mask_token
212+
self.gMASK_token = gmask_token
213+
214+
self.sp_tokenizer = SPTokenizer(vocab_file)
215+
216+
""" Initialisation """
217+
218+
@property
219+
def eop_token_id(self) -> Optional[int]:
220+
"""
221+
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been
222+
set.
223+
"""
224+
if self.eop_token is None:
225+
return None
226+
return self.convert_tokens_to_ids(self.eop_token)
227+
228+
@property
229+
def vocab_size(self):
230+
""" Returns vocab size """
231+
return self.sp_tokenizer.num_tokens
232+
233+
def get_vocab(self):
234+
""" Returns vocab as a dict """
235+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
236+
vocab.update(self.added_tokens_encoder)
237+
return vocab
238+
239+
def preprocess_text(self, inputs):
240+
if self.remove_space:
241+
outputs = " ".join(inputs.strip().split())
242+
else:
243+
outputs = inputs
244+
245+
if self.do_lower_case:
246+
outputs = outputs.lower()
247+
248+
return outputs
249+
250+
def _tokenize(self, text, **kwargs):
251+
""" Returns a tokenized string. """
252+
text = self.preprocess_text(text)
253+
254+
seq = self.sp_tokenizer.tokenize(text)
255+
256+
return seq
257+
258+
def decode(
259+
self,
260+
token_ids: Union[List[int], List[List[int]]],
261+
skip_special_tokens: bool = False,
262+
clean_up_tokenization_spaces: bool = True,
263+
spaces_between_special_tokens: bool = True,
264+
**kwargs
265+
) -> str:
266+
if isinstance(token_ids[0], list):
267+
tokens = []
268+
for single_token_ids in token_ids:
269+
if self.pad_token_id in single_token_ids: # remove pad
270+
single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids))
271+
tokens.append(self.sp_tokenizer.decode(single_token_ids))
272+
return (tokens)
273+
else:
274+
if self.pad_token_id in token_ids: # remove pad
275+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
276+
return self.sp_tokenizer.decode(token_ids)
277+
278+
def _convert_token_to_id(self, token):
279+
""" Converts a token (str) in an id using the vocab. """
280+
return self.sp_tokenizer[token]
281+
282+
def _convert_id_to_token(self, index):
283+
"""Converts an index (integer) in a token (str) using the vocab."""
284+
return self.sp_tokenizer[index]
285+
286+
def save_vocabulary(self, save_directory, filename_prefix=None):
287+
"""
288+
Save the vocabulary and special tokens file to a directory.
289+
290+
Args:
291+
save_directory (`str`):
292+
The directory in which to save the vocabulary.
293+
filename_prefix (`str`, *optional*):
294+
An optional prefix to add to the named of the saved files.
295+
296+
Returns:
297+
`Tuple(str)`: Paths to the files saved.
298+
"""
299+
if os.path.isdir(save_directory):
300+
vocab_file = os.path.join(
301+
save_directory, self.vocab_files_names["vocab_file"]
302+
)
303+
else:
304+
vocab_file = save_directory
305+
306+
with open(self.vocab_file, 'rb') as fin:
307+
proto_str = fin.read()
308+
309+
with open(vocab_file, "wb") as writer:
310+
writer.write(proto_str)
311+
312+
return (vocab_file,)
313+
314+
def build_inputs_with_special_tokens(
315+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
316+
) -> List[int]:
317+
"""
318+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
319+
adding special tokens. A BERT sequence has the following format:
320+
321+
- single sequence: `[CLS] X [SEP]`
322+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
323+
324+
Args:
325+
token_ids_0 (`List[int]`):
326+
List of IDs to which the special tokens will be added.
327+
token_ids_1 (`List[int]`, *optional*):
328+
Optional second list of IDs for sequence pairs.
329+
330+
Returns:
331+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
332+
"""
333+
if token_ids_1 is not None:
334+
token_ids_0 += token_ids_1
335+
mask_ids = self.sp_tokenizer[self.mask_token]
336+
gmask_ids = self.sp_tokenizer[self.gMASK_token]
337+
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0:
338+
token_ids_0 += [gmask_ids]
339+
340+
if token_ids_0[-1] != mask_ids and token_ids_0[-1] != gmask_ids:
341+
token_ids_0 += [self.sp_tokenizer[self.eos_token]]
342+
343+
token_ids_0 += [self.sp_tokenizer[self.bos_token]]
344+
345+
return token_ids_0
346+

0 commit comments

Comments
 (0)