-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetaphysics.py
786 lines (705 loc) · 42.4 KB
/
metaphysics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
#################################
########## METAPHYSICS ##########
####### Liam Hale McCarty #######
#################################
#####
# _Metaphysics_ is a pair of sculptures. One is a domino made of dice, and the other is a die made of dominoes. The latter is the focus of the code here, since constructing it properly requires a series of fairly complex calculations.
#####
#####
### Goals
#
# This code accomplishes two key goals:
# 1. List the sequence of dominoes that cover the die.
# 2. Determine the minimum number of domino sets required to make the die.
# Moreover, it does so in essentially a "scale free" way: the same goals can be accomplished for larger (or smaller) versions of the sculptures by simply changing a few parameters.
# The latter goal (determining `min_num_sets`) necessitates a long sequence of intermediate calcuations. To help you follow the code below, here's a brief summary of the major steps:
# 1. Number the squares from 0 to `num_squares` - 1.
# 2. Calculate `domino` and `number` for a square from the square number `square`.
# 3. Define the dots with coordinates.
# 4. Define the collections of dots for each side.
# 5. Calculate the white areas from the collections of dots.
# 6. Convert the dots and white areas from local into global coordinates.
# 7. Find the full and half dominoes that constitute the dots and white areas.
# 8. Count how many full and half dominoes constitute them.
# 9. Determine `min_num_sets` from these counts.
#####
#####
### Background
#
# The die of dominoes is a cube tiled by a circular domino train in a Hilbert curve pattern. (To be technically precise, it's a polygonal approximation to a Hilbert curve, since the Hilbert curve itself is the infinite limit of such approximations.) The standard Hilbert curve is open and fills the unit square, such that many copies of it fill the real number plane ($\mathbb{R}^2$). But since a cube is topologically closed, the Hilbert curve in this case will also be closed in that it will "loop back on itself".
#
# There are many ways one could describe such a Hilbert curve, but it's useful to (arbitrarily) pick out "start" and "end" points for clarity.
#
# 'start' of Hilbert curve Orientation of dots:
# v___________ ___________ ___________ ___________
# | | | | | |
# | | | | | + |
# | Side | Side | | + | |
# | 1 | 2 | | | + |
# |___________|___________|___________ |___________|___________|___________
# | | | | | |
# | | | | + + | + + + |
# | Side | Side | | | |
# | 4 | 6 | | + + | + + + |
# |___________|___________|___________ |___________|___________|___________
# | | | | | |
# | | | | + + | + |
# | Side | Side | | + | + |
# | 5 | 3 | | + + | + |
# |___________|___________| |___________|___________|
# ^
# 'end' of Hilbert curve
#
# Also shown above is the orientation of dots on the die. Note that this is quite a particular orientation. Not only is the order of numbers specific, but so is the way the dots are laid out on each side. For example, the 2-dot side could have dots on the other diagonal instead, but it doesn't. All of this is based on physical dice I used as references. A fun fact I learned in the process of inspecting and researching them: dice are designed such that two opposite sides' dots always sum to 7!
#
# The full Hilbert curve is composed of (traditional, open) Hilbert curves on each side of the cube. Each of these corresponds to either a "type 1" or "type 2" tiling (hence the 1 and 2 indices in the side names).
#
# For a type 1 tiling, the Hilbert curve starts in the upper left and ends in the upper right corner. For a type 2 tiling, the curve starts in the upper left and ends in the lower left corner.
#
# start end start
# v___________v v___________
# | | | |
# | | | |
# | Type 1 | x | Type 2 | y
# | | |---- > | | |---- >
# |___________| | |___________| |
# y v ^ x v
# end
#
# Note how this changes the local coordinate axes, as the diagram above indicates.
#
# These are both rotations of the "standard" Hilbert curve, which is the default for the `hilbertcurve` package I leverage below. That standard curve starts in the lower left and ends in the lower right corner:
#
# ___________
# | |
# | |
# | Standard | y ^
# | | |
# |___________| |---- >
# ^ ^ x
# start end
#
# To keep track of things, it's helpful to label the sides and dots. I label the sides, intuitively enough, based on the number of dots they have. For consistency, I list them in the order the appear on the diagram shown above, following standard left to right and top to bottom ordering: Side 1, Side 2, Side 4, etc.
#
# I label each dot with one index corresponding to the side it's on and a second index corresponding to its ordering on the side, left to right and top to bottom from the perspective of the diagram above. And again, I list them in order: Dot 1A, Dot 2A, Dot 2B, Dot 4A, Dot 4B, Dot 4C, Dot 4D, etc. For clarity:
#
# Labeling of dots:
# ___________ ___________
# | | 2A |
# | 1A | + |
# | + | 2B |
# | | + |
# |___________|___________|___________
# | 4A 4B | 6A 6B 6C |
# | + + | + + + |
# | 4C 4D | |
# | + + | + + + |
# |___________|___________|___________
# | 5A 5B | 3A |
# | + 5C + | 3B + |
# | 5D + 5E | 3C + |
# | + + | + |
# |___________|___________|
#
# It's also helpful to have coordinates for each side ("local" coordinates) and for the whole cube ("global" coordinates). Local coordinates always start at [0,0], but global coordinates start at different values for different sides so they're always unique. (See elsewhere below for more details.)
#
# Similarly, these local and global coordinates correspond to squares the local and global Hilbert curves pass through. Locally (on each side), the squares are indexed starting at 0. Globally, the squares are indexed starting at 0 on Side 1 and with higher indices across the cube.
#####
import math
from cmath import sqrt
from turtle import st
# for simple data tables
from tabulate import tabulate
# for colors in tables
from colorama import init, Back, Fore
# for Hilbert curve calculations
from hilbertcurve.hilbertcurve import HilbertCurve
# for Hilbert curve diagrams
import matplotlib.pyplot as plt
#####
### Preliminaries
#
# - 'square' indexes the squares the Hilbert curve runs through, starting at 0.
# - 'domino' indexes the dominoes tiling the cube, starting at 1. Note that here the tiling is defined to begin with a half domino. It could begin with a full one — both are valid tilings in line with the Hilbert curve, so it's a matter of choice. (I explain elsewhere why choosing the half domino approach was important for this project.)
# - 'term' indexes the term in my Wallis-like domino train product. Each such term includes two fractions multiplied together.
# - 'number' is the number of a particular half domino on a square.
#####
#####
#### `get_domino()`
#
# > Given `square`, find which domino tiles it.
#####
# The 2 here is not a variable because only real, standard dominoes (which cover two squares) are considered.
def get_domino(square):
return math.trunc(math.floor((square + 1) / 2)) + 1
#####
#### `get_term()`
#
# > Given `square`, find which term it corresponds to.
#####
# The 4 here is not a variable because my Wallis-like domino train product always has 2 fractions with 4 numerator/denominator values.
def get_term(square):
return math.trunc(math.floor((square + 1) / 4)) + 1
#####
#### `get_number()`
#
# > Given `square`, find which domino number covers it.
#####
# The 7s here are not variables because only real, standard half dominoes (which have 7 possible values, from 0 to 6) are considered. The 4 here is not a variable because my Wallis-like domino train product always has 2 fractions with 4 numerator/denominator values.
def get_number(square):
term = get_term(square)
# numerators and denominators of first and second fractions
num_1 = (2 * term - 1) % 7
den_1 = num_2 = (2 * term + math.trunc(math.floor((term - 1) / 7))) % 7
den_2 = (2 * term + 1) % 7
# a condition to pick out which numerator or denominator to set the number of a square to
# the number is just one of the two sections of a domino
condition = (square + 1) % 4
if condition == 0: return num_1
elif condition == 1: return den_1
elif condition == 2: return num_2
else: return den_2
#####
### Hilbert Curve Parameters
#
# **Important:** Note that these are paramaters for the local Hilbert curves on one side of the cube, not the global Hilbert curve covering the whole cube.
#
# This uses the [`hilbertcurve`](https://pypi.org/project/hilbertcurve/) package.
#
# - `iterations` is the number of iterations of (the polygonal approximation to) the Hilbert curve. For _Metaphysics_, this will be 4 for the smallest scale version but greater for the larger scale versions.
# - `dimensions` is the number of spatial dimensions. For _Metaphysics_, this will always be 2, since each local Hilbert curve corresponds to a tiling of one side of a cube (which has 2 dimensions).
# - `num_squares` is the number of squares in a Hilbert curve with so many iterations and of so many dimensions. (Since for _Metaphysics_ I'm always using 2 dimensions, I use the more specific term "squares" rather than the fully general "hypercubes".) In general, a Hilbert curve fills a hypercube with $2^{i \cdot d}$ unit hypercubes contained within in it, where $i$ is `iterations` and $d$ is `dimensions`. For 4 iterations and 2 dimensions, that's a square with $2^8 = 256$ unit squares contained within it.
#
# For _Metaphysics_, I'm using 6 connecting Hilbert curves (in 2 different orientations) to cover the surface of a cube.
# Note that this package produces a Hilbert curve that begins at the lower left and ends at the lower right corner. As a result, no matter the orientation of the Hilbert curve considered here, I pick coordinates such that [0,0] is at the beginning and [`sqrt(num_squares)`,0] is at the end.
#####
iterations = 4
dimensions = 2
hilbert_curve = HilbertCurve(iterations, dimensions)
num_coordinates_per_side = 2 ** iterations
num_squares = num_coordinates_per_side ** dimensions
#####
### Dots
#
# "Dots" are the dots (sometimes called "pips") on a die.
#
# For _Metaphysics_, I'm using two Hilbert curve orientations, which means there are two types of tiling. These have different coordinate orientations, as described above.
#
# The dots have two indices. The first (1, 2, 3, ...) indicates the side of the die the dot is on. The second (A, B, C, ...) indicates the order of the dot on its side of the die. They're ordered from left to right and top to bottom from the perspective of the diagram above.
#
# These are currently defined only for a Hilbert curve tiling with 256 squares. Ideally, they'd be defined independently of the number of squares, with variables rather than numbers, but doing this is complicated because the shape of each dot and the spacing between dots and the cube sides should change with the number of squares. So, I'm skipping this for now.
#
# **Important:** The dots are first defined in "local" coordinates, where each side's coordinates goes from [0,0] to [`sqrt(num_squares)` - 1, `sqrt(num_squares)` - 1], i.e. [15,15]. (Confusingly enough, these are "global variables" in the programming sense!) The `get_global_coordinates()` function further below will later transform these local coordinates into global ones, where each side's coordinates start at a multiple of `sqrt(num_squares)` times the index of the side in the ordering shown in the diagram above (starting at 0). In global coordinates, the first side starts at [0,0], the second at [`sqrt(num_squares)`,`sqrt(num_squares)`] i.e. [16,16], the third at [`2 * sqrt(num_squares)`, `2 * sqrt(num_squares)`] i.e. [32,32], and so on.
#####
dot_1A = [[6,7], [6,8], [7,6], [7,7], [7,8], [7,9], [8,6], [8,7], [8,8], [8,9], [9,7], [9,8]]
dot_2A = [[1,12], [1,13], [2,11], [2,12], [2,13], [2,14], [3,11], [3,12], [3,13], [3,14], [4,12], [4,13]]
dot_2B = [[11,2], [11,3], [12,1], [12,2], [12,3], [12,4], [13,1], [13,2], [13,3], [13,4], [14,2], [14,3]]
dot_4A = [[1,2], [1,3], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [3,3], [3,4], [4,2], [4,3]]
dot_4B = [[11,2], [11,3], [12,1], [12,2], [12,3], [12,4], [13,1], [13,2], [13,3], [13,4], [14,2], [14,3]]
dot_4C = [[1,12], [1,13], [2,11], [2,12], [2,13], [2,14], [3,11], [3,12], [3,13], [3,14], [4,12], [4,13]]
dot_4D = [[11,12], [11,13], [12,11], [12,12], [12,13], [12,14], [13,11], [13,12], [13,13], [13,14], [14,12], [14,13]]
dot_6A = [[1,2], [1,3], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [3,3], [3,4], [4,2], [4,3]]
dot_6B = [[1,7], [1,8], [2,6], [2,7], [2,8], [2,9], [3,6], [3,7], [3,8], [3,9], [4,7], [4,8]]
dot_6C = [[1,12], [1,13], [2,11], [2,12], [2,13], [2,14], [3,11], [3,12], [3,13], [3,14], [4,12], [4,13]]
dot_6D = [[11,2], [11,3], [12,1], [12,2], [12,3], [12,4], [13,1], [13,2], [13,3], [13,4], [14,2], [14,3]]
dot_6E = [[11,7], [11,8], [12,6], [12,7], [12,8], [12,9], [13,6], [13,7], [13,8], [13,9], [14,7], [14,8]]
dot_6F = [[11,12], [11,13], [12,11], [12,12], [12,13], [12,14], [13,11], [13,12], [13,13], [13,14], [14,12], [14,13]]
dot_5A = [[1,2], [1,3], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [3,3], [3,4], [4,2], [4,3]]
dot_5B = [[11,2], [11,3], [12,1], [12,2], [12,3], [12,4], [13,1], [13,2], [13,3], [13,4], [14,2], [14,3]]
dot_5C = [[6,7], [6,8], [7,6], [7,7], [7,8], [7,9], [8,6], [8,7], [8,8], [8,9], [9,7], [9,8]]
dot_5D = [[1,12], [1,13], [2,11], [2,12], [2,13], [2,14], [3,11], [3,12], [3,13], [3,14], [4,12], [4,13]]
dot_5E = [[11,12], [11,13], [12,11], [12,12], [12,13], [12,14], [13,11], [13,12], [13,13], [13,14], [14,12], [14,13]]
dot_3A = [[1,12], [1,13], [2,11], [2,12], [2,13], [2,14], [3,11], [3,12], [3,13], [3,14], [4,12], [4,13]]
dot_3B = [[6,7], [6,8], [7,6], [7,7], [7,8], [7,9], [8,6], [8,7], [8,8], [8,9], [9,7], [9,8]]
dot_3C = [[11,2], [11,3], [12,1], [12,2], [12,3], [12,4], [13,1], [13,2], [13,3], [13,4], [14,2], [14,3]]
dots = [dot_1A, dot_2A, dot_2B, dot_4A, dot_4B, dot_4C, dot_4D, dot_6A, dot_6B, dot_6C, dot_6D, dot_6E, dot_6F, dot_5A, dot_5B, dot_5C, dot_5D, dot_5E, dot_3A, dot_3B, dot_3C]
dot_names = ['Dot 1A', 'Dot 2A', 'Dot 2B', 'Dot 4A', 'Dot 4B', 'Dot 4C', 'Dot 4D', 'Dot 6A', 'Dot 6B', 'Dot 6C', 'Dot 6D', 'Dot 6E', 'Dot 6F', 'Dot 5A', 'Dot 5B', 'Dot 5C', 'Dot 5D', 'Dot 5E', 'Dot 3A', 'Dot 3B', 'Dot 3C']
#####
### Sides
#
# "Sides" are the sides of a dice. The variables below list the dots on each side. This is somewhat redundant, since the dot names encode the side they're on (with their first index), but it's useful to have this information consolidated.
#
# **Important:** `generic_side` here is a generic side in local coordinates. This makes it possible to calculate white areas in local coordinates using dots in local coordinates together with this generic side.
#####
side_1_dots = [dot_1A]
side_2_dots = [dot_2A, dot_2B]
side_4_dots = [dot_4A, dot_4B, dot_4C, dot_4D]
side_6_dots = [dot_6A, dot_6B, dot_6C, dot_6D, dot_6E, dot_6F]
side_5_dots = [dot_5A, dot_5B, dot_5C, dot_5D, dot_5E]
side_3_dots = [dot_3A, dot_3B, dot_3C]
sides_dots = [side_1_dots, side_2_dots, side_4_dots, side_6_dots, side_5_dots, side_3_dots]
num_sides_dots = len(sides_dots)
side_names = ['Side 1', 'Side 2', 'Side 4', 'Side 6', 'Side 5', 'Side 3']
# This is defined so that it can be passed along with dots (defined above), since the order and length of the two lists match.
dots_side_list = [side_1_dots, side_2_dots, side_2_dots, side_4_dots, side_4_dots, side_4_dots, side_4_dots, side_6_dots, side_6_dots, side_6_dots, side_6_dots, side_6_dots, side_6_dots, side_5_dots, side_5_dots, side_5_dots, side_5_dots, side_5_dots, side_3_dots, side_3_dots, side_3_dots]
#####
#### `get_generic_side()`
#
# > Calculate a generic side, i.e. one in local coordinates. This includes [0,0], [0,1], [0,2], ..., [1,0], [1,1], [1,2], ..., [sqrt(num_squares),sqrt(num_squares)].
#####
def get_generic_side():
generic_side = []
for i in range(0, int(math.sqrt(num_squares))):
for j in range(0, int(math.sqrt(num_squares))):
generic_side.append([i,j])
return generic_side
generic_side = get_generic_side()
#####
### White Areas
#
# A 'white area' is the part of a side that isn't the dots.
#
# Important: The white areas are first defined in local coordinates. The get_global_coordinates() function below will later transform them into global coordinates.
#####
#####
#### `get_white_area()`
#
# > Given a particular side (which is a list of dots), find the list of coordinates for its white area. This is done by removing the coordinates for the dots on the given side.
#####
def get_white_area(side_dots):
# I find this quite nonintuitive, but white_area = generic_side doesn't work here because that syntax just creates a reference to the original list rather than creating a copy of that list. So, it's necessary to explictly copy the list so we can make changes to the new list values without changing the corresponding original list values. There are many ways to do this: see https://stackoverflow.com/questions/2612802/list-changes-unexpectedly-after-assignment-why-is-this-and-how-can-i-prevent-it.
# For some reason that I have been unable to figure out, `white_area = generic_side[:]`, `white_area = generic_side.copy()`, and the like do NOT work. But `white_area = get_generic_side()` does!
# white_area = generic_side[:]
white_area = get_generic_side()
# remove the coordinates corresponding to dots
for k in range(0, len(side_dots)):
for l in range(0, len(side_dots[k])):
# side[k] is a dot, and side[k][l] is a coordinate in that dot
# list order matters, so this will remove e,g, [2,5] but not [5,2]
white_area.remove(side_dots[k][l])
return white_area
white_area_1 = get_white_area(side_1_dots)
white_area_2 = get_white_area(side_2_dots)
white_area_4 = get_white_area(side_4_dots)
white_area_6 = get_white_area(side_6_dots)
white_area_5 = get_white_area(side_5_dots)
white_area_3 = get_white_area(side_3_dots)
white_areas = [white_area_1, white_area_2, white_area_4, white_area_6, white_area_5, white_area_3]
white_area_names = ['White Area for Side 1', 'White Area for Side 2', 'White Area for Side 4', 'White Area for Side 6', 'White Area for Side 5', 'White Area for Side 3']
# This is defined so that it can be passed along with white areas, since the order and length of the two lists match.
white_areas_side_list = [side_1_dots, side_2_dots, side_4_dots, side_6_dots, side_5_dots, side_3_dots]
#####
### Diagrams
#####
#####
#### `create_hilbert_curve_diagram()`
#
# > Create a Hilbert curve diagram.
# >
# > This adapts code from the GitHub repo of the [`hilbertcurve`](https://pypi.org/project/hilbertcurve/) package. The side index is that of the ordering of sides defined above. This function creates a diagram for one side at a time.
# >
# > Note that, currently, this does not adjust the orientation of the Hilbert curve to be type 1 or 2 for a given side (as defined above). All Hilbert curves it produces are in "standard" orientation.
#####
def create_hilbert_curve_diagram(side_index):
# this has to be at the beginning, not with the other 'plt' statements below
plt.figure(figsize = (10,10))
min_coordinate = 0
max_coordinate = num_coordinates_per_side - 1
cmin = min_coordinate - 0.5
cmax = max_coordinate + 0.5
colors = ['red', 'blue', 'black', 'green', 'purple', 'cyan', 'gray']
line_widths = [32, 16, 8, 4, 2, 1, 0.5]
offset = 0
dx = 0.5
for i in range(iterations, iterations - 1, -1):
curve = HilbertCurve(i, dimensions)
num_coordinates_per_side_i = 2 ** i
num_points = 2 ** (i * dimensions)
points = []
for j in range(num_points):
points.append(curve.point_from_distance(j))
points = [
[(point[0] * num_coordinates_per_side / num_coordinates_per_side_i) + offset,
(point[1] * num_coordinates_per_side / num_coordinates_per_side_i) + offset]
for point in points]
connectors = range(3, num_points, 4)
color = colors[i - 1]
# '+ len(line_widths) - iterations' so it starts at a smaller line width (later in the list) when iterations is smaller than the number of line width values
# Note that to increase iterations beyond this number, more line width values (and colors) should be added
line_width = line_widths[i - 1 + len(line_widths) - iterations]
for k in range(num_points - 1):
if k in connectors:
line_style = '--'
alpha = 0.5
else:
line_style = '-'
alpha = 1.0
plt.plot((points[k][0], points[k + 1][0]), (points[k][1], points[k + 1][1]),
color = color, linewidth = line_width, linestyle = line_style, alpha = alpha)
for l in range(num_points):
plt.scatter(points[l][0], points[l][1], 60, color = color)
plt.text(points[l][0] + 0.1, points[l][1] + 0.1, str(l + side_index * num_points), color = color)
offset += dx
dx *= 2
plt.title('Hilbert Curve Pattern for ' + str(side_names[side_index]))
plt.grid(alpha = 0.3)
plt.xlim(cmin, cmax)
plt.ylim(cmin, cmax)
plt.xlabel('x', fontsize = 16)
plt.ylabel('y', fontsize = 16)
plt.tight_layout()
plt.savefig(str(side_names[side_index]) + ' - ' + str(iterations) + ' iterations, ' + str(dimensions) + ' dimensions.png')
create_hilbert_curve_diagram(0)
# Colors for tables
backs = [Back.LIGHTBLUE_EX, Back.WHITE, Back.GREEN, Back.YELLOW, Back.LIGHTMAGENTA_EX, Back.CYAN, Back.LIGHTRED_EX]
num_colors = len(backs)
#####
### Values and Number Counts
#####
#####
#### `print_values()`
#
# > Print a table of values for square, domino, term, and number.
#####
def print_values():
column_headers = ['Square', 'Domino', 'Term', 'Number']
# array of rows
data = []
# num_squares is per side, but we want to tile all sides of the cube
for square in range(0, num_squares * num_sides_dots):
domino = get_domino(square)
term = get_term(square)
number = get_number(square)
# setting different colors for different numbers (mainly because it's very easy to confuse 0 and 6 when reading the table)
# see https://compucademy.net/python-tables-for-multiplication-and-addition/
color = backs[number % num_colors]
data.append([square, domino, term, f'{color}{number}{Back.RESET}'])
# add dash to simulate 'fraction' line on domino
if square % 2 == 1: data.append(['', '', '', '-'])
# add spacing to make it easier to see pairs of domino numbers
else: data.append(['........', '........', '......', '........'])
print(tabulate(data, column_headers, tablefmt = "pretty"))
print_values()
#####
#### `print_number_counts()`
#
# > Print counts of how many times each number (0 through 6) appears.
#####
def print_number_counts():
column_headers = ['0', '1', '2', '3', '4', '5', '6']
# array of rows
data = [[0, 0, 0, 0, 0, 0, 0]]
for square in range(0, num_squares * num_sides_dots):
number = get_number(square)
data[0][number] += 1
print("Number counts:")
print(tabulate(data, column_headers))
print_number_counts()
#####
### Coordinates and Squares
#
# In local coordinates, each side's coordinates goes from [0,0] to [`sqrt(num_squares) - 1`, `sqrt(num_squares) - 1`].
#
# In global coordinates, each side's coordinates start at a multiple of `sqrt(num_squares)` times the index of the side in the ordering shown in the diagram above (starting at 0). So, the first side starts at [0,0], the second at [`sqrt(num_squares)`,`sqrt(num_squares)`], the third at [`2 * sqrt(num_squares)`, `2 * sqrt(num_squares)`], and so on.
#
# Note that a single coordinate is a list of numbers (with a number of elements equal to `dimensions`, which for _Metaphysics_ is always 2), e.g. [2,5]. Coordinates (plural) are lists of such lists, e.g. [[2,5], [6,3], [7,7]].
#####
#####
#### `get_global_coordinates()`
#
# > Given local coordinates and a side, get the corresponding global coordinates.
# >
# > This function requires a list of lists input, even for a single coordinate.
#####
def get_global_coordinates(local_coordinates, side_dots):
global_coordinates = []
for i in range(0, len(local_coordinates)):
global_coordinate = []
for j in range(0, len(local_coordinates[i])):
global_coordinate.append(local_coordinates[i][j] + sides_dots.index(side_dots) * int(math.sqrt(num_squares)))
global_coordinates.append(global_coordinate)
return global_coordinates
#####
#### `set_global_coordinates()`
#
# > Given local coordinates and a side, set the corresponding global coordinates.
# >
# > This function requires a list of lists input, even for a single coordinate.
#####
def set_global_coordinates(local_coordinates, side_dots):
for i in range(0, len(local_coordinates)):
for j in range(0, len(local_coordinates[i])):
local_coordinates[i][j] += sides_dots.index(side_dots) * int(math.sqrt(num_squares))
#####
#### `set_global_coordinates_batch()`
#
# > Given local coordinates and a side, set the corresponding global coordinates in a batch.
# >
# > This function requires a list of a list of lists input.
# > Note that the order and length of the two lists (`local_coordinates_list` and `side_list``) **must** match so that each local_coordinates matches the appropriate side.
#####
def set_global_coordinates_batch(local_coordinates_list, side_list):
for i in range(0, len(local_coordinates_list)): set_global_coordinates(local_coordinates_list[i], side_list[i])
# Transform dots and white areas from local into global coordinates.
set_global_coordinates_batch(dots, dots_side_list)
set_global_coordinates_batch(white_areas, white_areas_side_list)
#####
#### `get_squares()`
#
# > Given (a list of) global coordinates (e.g. a dot), find the squares (ordered along the Hilbert curve) that the list includes.
# >
# > Note that either local or global coordinates can be inputted, but the output will always be global square numbers.
# >
# > The input list of coordinates is in the number of the dimensions of the Hilbert curve (always 2 for _Metaphysics_).
# >
# > The output is an (ordered) list of coordinates in 1 dimension, since the Hilbert curve itself is 1-dimensional (at least "stretched out", since the "curled up" curve has fractal Hausdorff dimension 2).
#####
def get_squares(coordinates):
# Calculate the side index as a kind of offset: how many times the coordinate values can be divided by sqrt(num_squares). (We can used any coordinate value to find this — coordinates[0][0] is just an arbitrary choice.) For example, if the coordinate value is 18 and sqrt(num_squares) is 16, the offset is 1 because 18 can be divided by 16 once. This ia also the side index of that coordinate: it's on the second side.
# This index could instead be passed into the function, but it's helpful to calcuate it here so that's not necessary.
# Note that this should always be an integer: math.trunc() and math.floor() are just safeguards.
side_index = int((coordinates[0][0] - (coordinates[0][0] % int(math.sqrt(num_squares)))) / int(math.sqrt(num_squares)))
local_coordinates = []
for coordinate in coordinates:
local_coordinate = []
for i in range(0, len(coordinate)):
# Mod by sqrt(num_squares) to make the coordinate local, so that distances_from_points from the hilbertcurve package can be used to calculate local square numbers.
local_coordinate.append(coordinate[i] % int(math.sqrt(num_squares)))
local_coordinates.append(local_coordinate)
points = local_coordinates
distances = hilbert_curve.distances_from_points(points)
# Finally, calculate global square values simply by adding num_squares (per side), scaled by the side index
global_squares = []
for distance in distances: global_squares.append(distance + (side_index * num_squares))
return global_squares
#####
#### `print_squares()`
#
# > Print squares for a given list of coordinates.
# >
# > The relevant group of coordinates and their names must be passed also.
#####
def print_squares(coordinates, coordinates_group, coordinate_names):
print('Squares for ' + coordinate_names[coordinates_group.index(coordinates)] + ':')
print(get_squares(coordinates))
print_squares(dot_1A, dots, dot_names)
#####
#### `get_other_domino_square()`
#
# > Given the domino number of a square, find the other square with that domino number.
# >
# > There's only one, and it's either the previous or next one.
#####
def get_other_domino_square(square):
previous_square = square - 1
next_square = square + 1
if get_domino(square) == get_domino(previous_square): return previous_square
else: return next_square
#####
### Dominoes and Domino Counts
#####
#####
#### `get_dominoes()`
#
# > Given (a list of) coordinates (e.g. a dot), find the full and half dominoes that compose it.
#####
def get_dominoes(coordinates):
full_dominoes = []
half_dominoes = []
coordinates_squares = get_squares(coordinates)
# the squares already 'used', or included in a full or half domino already added
used_squares = []
for square in coordinates_squares:
other_domino_square = get_other_domino_square(square)
# if the other domino square isn't used
if (other_domino_square not in used_squares):
# if it's in the coordinates (e.g. a dot), add to full dominoes
if (other_domino_square in coordinates_squares):
domino = [get_number(square), get_number(other_domino_square)]
# sort to avoid counting e.g. [2,5] and [5,2] separately — they should be treated as the same
domino.sort()
full_dominoes.append(domino)
# add squares to used list
# not strictly necessary to add 'square', since we're iterating over it (i.e. the for loop takes care of not considering it multiple times), but it's more intuitive to also consider it 'used'
used_squares.extend([square, other_domino_square])
# else, add to half dominoes
else:
half_domino = get_number(square)
half_dominoes.append(half_domino)
used_squares.append(square)
return full_dominoes, half_dominoes
#####
#### `get_dominoes_counts()`
#
# > Given (lists of) full and half dominoes (e.g. for a single dot), count how many there are of each type.
# >
# > Order doesn't matter for full dominoes, e.g. [2,5] and [5,2] are considered the same. This will be used in table data, so notice that there are row headers included (which aren't themselves counts, of course).
# >
# > The table data for half dominoes has only one row, so there's no need for a row header there.
#####
def get_dominoes_counts(full_dominoes, half_dominoes):
# the first values are row headers
full_dominoes_counts = [[0], [1], [2], [3], [4], [5], [6]]
# no need for row headers — there's only one row
half_dominoes_counts = [[]]
for i in range(0, 7):
for j in range (0, i + 1):
# They're already sorted in get_dominoes(), so no need to count both [i,j] and [j,i].
# If it seems odd that it's [j,i] below, that's only because j is never greater than i given this iteration strategy, so it should come first because sort(), used in get_dominoes(), puts smaller numbers first (i.e. ascending order).
full_dominoes_count = full_dominoes.count([j,i])
# Using append() here takes care of the ordering, so no need to use the j index.
full_dominoes_counts[i].append(full_dominoes_count)
half_dominoes_count = half_dominoes.count(i)
half_dominoes_counts[0].append(half_dominoes_count)
return full_dominoes_counts, half_dominoes_counts
#####
#### `get_sum_dominoes_counts()`
#
# > Given (a list of a list of) coordinates (e.g. a list of dots), find the sum of counts for full and half dominoes.
#####
def get_sum_dominoes_counts(coordinates):
# initilialize with zero values so they can later be overwritten (to avoid 'index out of range' error)
sum_full_dominoes_counts = [
[0, 0],
[1, 0, 0],
[2, 0, 0, 0],
[3, 0, 0, 0, 0],
[4, 0, 0, 0, 0, 0],
[5, 0, 0, 0, 0, 0, 0],
[6, 0, 0, 0, 0, 0, 0, 0]]
sum_half_dominoes_counts = [[0, 0, 0, 0, 0, 0, 0]]
for i in range(0, len(coordinates)):
full_dominoes, half_dominoes = get_dominoes(coordinates[i])
full_dominoes_counts, half_dominoes_counts = get_dominoes_counts(full_dominoes, half_dominoes)
# add up full domino counts
for j in range(0, len(full_dominoes_counts)):
# start at 1 since the first items are just row headers
for k in range(1, len(full_dominoes_counts[j])):
# adjust by frequency
sum_full_dominoes_counts[j][k] += (full_dominoes_counts[j][k])
# add up half domino counts
for l in range(0, len(half_dominoes_counts[0])):
# adjust by frequency
sum_half_dominoes_counts[0][l] += (half_dominoes_counts[0][l])
return sum_full_dominoes_counts, sum_half_dominoes_counts
#####
# #### `print_dominoes_counts()`
#
# > Given (a list of a list of) coordinates (e.g. a list of dots), print tables of full and half domino counts.
# >
# > The "names" input is a list of names for each list of coordinates.
#####
def print_dominoes_counts(coordinates, names):
full_dominoes_headers = ['#', 0, 1, 2, 3, 4, 5, 6]
half_dominoes_headers = [0, 1, 2, 3, 4, 5, 6]
for i in range(0, len(coordinates)):
full_dominoes, half_dominoes = get_dominoes(coordinates[i])
full_dominoes_counts, half_dominoes_counts = get_dominoes_counts(full_dominoes, half_dominoes)
print('Full Dominoes for ' + names[i] + ':')
print(tabulate(full_dominoes_counts, full_dominoes_headers))
print('Half Dominoes for ' + names[i] + ':')
print(tabulate(half_dominoes_counts, half_dominoes_headers))
sum_full_dominoes_counts, sum_half_dominoes_counts = get_sum_dominoes_counts(coordinates)
print('Full Dominoes for All:')
print(tabulate(sum_full_dominoes_counts, full_dominoes_headers))
print('Half Dominoes for All:')
print(tabulate(sum_half_dominoes_counts, half_dominoes_headers))
print_dominoes_counts(dots, dot_names)
print_dominoes_counts(white_areas, white_area_names)
#####
#### `get_min_num_sets()`
#
# > Given counts of full and half dominoes, find the minimum number of domino sets required.
# >
# > A standard domino set (with column and row headers) is:
# ```python
# # # 0 1 2 3 4 5 6
# # --- --- --- --- --- --- --- ---
# # 0 1
# # 1 1 1
# # 2 1 1 1
# # 3 1 1 1 1
# # 4 1 1 1 1 1
# # 5 1 1 1 1 1 1
# # 6 1 1 1 1 1 1 1
# ```
# >
# > That is, it has one domino of each type. As a result, there are 8 half dominoes of each number (0 through 6).
#####
def get_min_num_sets(full_dominoes_counts, half_dominoes_counts):
# The minimum number of sets must be at least as great as the highest full dominoes count. (That's because there's no other way to get a particular full domino than through a new set, since each set has only one of a given type.)
max_full_dominoes_count = 0
for i in range(0, len(full_dominoes_counts)):
# start at 1 since the first items are just row headers
for j in range(1, len(full_dominoes_counts[i])):
if full_dominoes_counts[i][j] > max_full_dominoes_count: max_full_dominoes_count = full_dominoes_counts[i][j]
min_num_sets = max_full_dominoes_count
# how many half dominoes are left over for use
# initilialize with zero values so they can later be overwritten (to avoid 'index out of range' error)
leftover_half_dominoes_counts = [[0, 0, 0, 0, 0, 0, 0]]
# Loop through again and set each leftover full dominoes count to be the difference between the (provisional) minimum number of sets and the value of the corresponding full dominoes count.
for k in range(0, len(full_dominoes_counts)):
# start at 1 since the first items are just row headers
for l in range(1, len(full_dominoes_counts[k])):
# k and l - 1 (minus 1 because there aren't row headers for the leftover half dominoes counts list) are the domino numbers, so add to those leftover half dominoes counts
leftover_half_dominoes_counts[0][k] += max_full_dominoes_count - full_dominoes_counts[k][l]
leftover_half_dominoes_counts[0][l - 1] += max_full_dominoes_count - full_dominoes_counts[k][l]
# Check if there are enough leftover half dominoes.
for m in range(0, len(half_dominoes_counts[0])):
while half_dominoes_counts[0][m] > leftover_half_dominoes_counts[0][m]:
# If there aren't enough leftover half dominoes with a particular number, we don't have enough sets. So, increment the minimum number of sets by 1 and the leftover half dominoes counts by 8 (since each set has 8 half dominoes of a particular number)
min_num_sets += 1
for n in range(0, len(leftover_half_dominoes_counts[0])): leftover_half_dominoes_counts[0][n] += 8
# Once we have enough leftover half dominoes for each number, we have the minimum number of sets.
return min_num_sets
#####
#### `print_min_num_sets()`
#
# > Given (a list of a list of) coordinates (e.g. a list of dots), print the minimum number of sets to cover them.
#####
def print_min_num_sets(coordinates):
sum_full_dominoes_counts, sum_half_dominoes_counts = get_sum_dominoes_counts(coordinates)
min_num_sets = get_min_num_sets(sum_full_dominoes_counts, sum_half_dominoes_counts)
print('Minimum Number of Domino Sets to Cover All:')
print(min_num_sets)
print_min_num_sets(dots)
print_min_num_sets(white_areas)
#### NOT WORKING BELOW ###
# side_1_dots_coordinates = dot_1A + white_area_1
# side_2_dots_coordinates = dot_2A + dot_2B + white_area_2
# side_4_dots_coordinates = dot_4A + dot_4B + dot_4C + dot_4D + white_area_4
# side_6_dots_coordinates = dot_6A + dot_6B + dot_6C + dot_6D + dot_6E + dot_6F + white_area_6
# side_5_dots_coordinates = dot_5A + dot_5B + dot_5C + dot_5D + dot_5E + white_area_5
# side_3_dots_coordinates = dot_3A + dot_3B + dot_3C + white_area_3
#####
# Given a number of domino sets and full and half domino counts, return a list of dominoes to cut. Note that the number of dominoes in this list is the number of cuts to make.
#
# This list is optimal in the sense that this function first includes dominoes for which both halves can be used and the dominoes for which only one half can be used. There may be even more optimal sets, but I imagine determining this would involved fairly detailed combinatorics of the dominoes themselves and I haven't bothered to think about it much!
#
# Note that the number of sets must be greater than or equal to the maximum count in the full dominoes counts. Otherwise, the function will raise an error.
#####
def get_optimal_cuts(num_sets, full_dominoes_counts, half_dominoes_counts):
leftover_full_dominoes_counts = full_dominoes_counts
for i in range(0, len(full_dominoes_counts)):
# start at 1 since the first items are just row headers
for j in range(1, len(full_dominoes_counts[i])):
if num_sets - full_dominoes_counts[i][j] < 0: raise ValueError('Not enough domino sets for this many dominoes!')
leftover_full_dominoes_counts[i][j] = num_sets - full_dominoes_counts[i][j]
dominoes_to_cut = []
# First, add to the list all dominoes for which both halves can be used.
for k in range(0, len(leftover_full_dominoes_counts)):
# start at 1 since the first items are just row headers
for l in range(1, len(leftover_full_dominoes_counts[k])):
# If both halves of the full domino can be used, add this domino to this list of those to be cut.
# k and l - 1 (minus 1 because there aren't row headers for the leftover half dominoes counts list) are the domino numbers, so add to those leftover half dominoes counts
if half_dominoes_counts[0][k] != 0 and half_dominoes_counts[0][l - 1] !=0:
dominoes_to_cut.append([k,l])
leftover_full_dominoes_counts[k][l] -= 1
# Then, loop through again and add to the list all dominoes for which only one half can be used.
for m in range(0, len(leftover_full_dominoes_counts)):
# start at 1 since the first items are just row headers
for l in range(1, len(leftover_full_dominoes_counts[k])):
if half_dominoes_counts[0][k] != 0 or half_dominoes_counts[0][l - 1] !=0:
dominoes_to_cut.append([k,l])
leftover_full_dominoes_counts[k][l] -= 1
return dominoes_to_cut
def print_optimal_cuts(coordinates):
sum_full_dominoes_counts, sum_half_dominoes_counts = get_sum_dominoes_counts(coordinates)
min_num_sets = get_min_num_sets(sum_full_dominoes_counts, sum_half_dominoes_counts)
dominoes_to_cut = get_optimal_cuts(min_num_sets, sum_full_dominoes_counts, sum_half_dominoes_counts)
print("Optimal dominoes to cut:")
print(dominoes_to_cut)
# print("For dots:")
# print_optimal_cuts(dots)
# print("For white areas:")
# print_optimal_cuts(white_areas)