|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true, |
| 8 | + "deletable": true, |
| 9 | + "editable": true |
| 10 | + }, |
| 11 | + "outputs": [], |
| 12 | + "source": [ |
| 13 | + "import numpy as np" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 2, |
| 19 | + "metadata": { |
| 20 | + "collapsed": true, |
| 21 | + "deletable": true, |
| 22 | + "editable": true |
| 23 | + }, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "dim_x, dim_y, colors=10,11,5\n", |
| 27 | + "kernel_x, kernel_y, in_colors, out_colors=2,3,colors, 4" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 3, |
| 33 | + "metadata": { |
| 34 | + "collapsed": false, |
| 35 | + "deletable": true, |
| 36 | + "editable": true |
| 37 | + }, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "im=np.random.rand(dim_x, dim_y, colors)\n", |
| 41 | + "weights=np.random.rand(kernel_x, kernel_y, in_colors, out_colors)\n", |
| 42 | + "\n", |
| 43 | + "debug_weights=np.random.rand(*(dim_x-kernel_x+1, dim_y-kernel_y+1, out_colors))" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": 4, |
| 49 | + "metadata": { |
| 50 | + "collapsed": false, |
| 51 | + "deletable": true, |
| 52 | + "editable": true |
| 53 | + }, |
| 54 | + "outputs": [ |
| 55 | + { |
| 56 | + "data": { |
| 57 | + "text/plain": [ |
| 58 | + "(10, 11, 5)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + "execution_count": 4, |
| 62 | + "metadata": {}, |
| 63 | + "output_type": "execute_result" |
| 64 | + } |
| 65 | + ], |
| 66 | + "source": [ |
| 67 | + "im.shape" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 5, |
| 73 | + "metadata": { |
| 74 | + "collapsed": true, |
| 75 | + "deletable": true, |
| 76 | + "editable": true |
| 77 | + }, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "def forward(im, weights):\n", |
| 81 | + " kernel_x, kernel_y, in_colors, out_colors=weights.shape\n", |
| 82 | + " dim_x, dim_y, colors=im.shape\n", |
| 83 | + " \n", |
| 84 | + " \n", |
| 85 | + " out=np.empty((dim_x-kernel_x+1, dim_y-kernel_y+1, out_colors))\n", |
| 86 | + " \n", |
| 87 | + " for i in range(out.shape[0]):\n", |
| 88 | + " for j in range(out.shape[1]):\n", |
| 89 | + " crop=im[i:i+kernel_x, j:j+kernel_y]\n", |
| 90 | + " #expand crops so the dimensions match\n", |
| 91 | + " crop=np.expand_dims(crop, axis=-1)\n", |
| 92 | + " \n", |
| 93 | + " res=crop*weights\n", |
| 94 | + " \n", |
| 95 | + " #sum everything except the output\n", |
| 96 | + " res=np.apply_over_axes(np.sum, res, [0,1,2]).reshape(-1)\n", |
| 97 | + " \n", |
| 98 | + " out[i,j]=res\n", |
| 99 | + " \n", |
| 100 | + " return out" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": 6, |
| 106 | + "metadata": { |
| 107 | + "collapsed": false, |
| 108 | + "deletable": true, |
| 109 | + "editable": true |
| 110 | + }, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "out=forward(im, weights)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": 7, |
| 119 | + "metadata": { |
| 120 | + "collapsed": false |
| 121 | + }, |
| 122 | + "outputs": [ |
| 123 | + { |
| 124 | + "data": { |
| 125 | + "text/plain": [ |
| 126 | + "(9, 9, 4)" |
| 127 | + ] |
| 128 | + }, |
| 129 | + "execution_count": 7, |
| 130 | + "metadata": {}, |
| 131 | + "output_type": "execute_result" |
| 132 | + } |
| 133 | + ], |
| 134 | + "source": [ |
| 135 | + "out.shape" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 8, |
| 141 | + "metadata": { |
| 142 | + "collapsed": false, |
| 143 | + "deletable": true, |
| 144 | + "editable": true |
| 145 | + }, |
| 146 | + "outputs": [], |
| 147 | + "source": [ |
| 148 | + "debug_out=np.sum(out*debug_weights)" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": 9, |
| 154 | + "metadata": { |
| 155 | + "collapsed": false, |
| 156 | + "deletable": true, |
| 157 | + "editable": true |
| 158 | + }, |
| 159 | + "outputs": [ |
| 160 | + { |
| 161 | + "data": { |
| 162 | + "text/plain": [ |
| 163 | + "1202.8937344394294" |
| 164 | + ] |
| 165 | + }, |
| 166 | + "execution_count": 9, |
| 167 | + "metadata": {}, |
| 168 | + "output_type": "execute_result" |
| 169 | + } |
| 170 | + ], |
| 171 | + "source": [ |
| 172 | + "debug_out" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": 10, |
| 178 | + "metadata": { |
| 179 | + "collapsed": false, |
| 180 | + "deletable": true, |
| 181 | + "editable": true |
| 182 | + }, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "debug_shape=debug_weights.shape\n", |
| 186 | + "\n", |
| 187 | + "padded=np.zeros((debug_shape[0]+2*(kernel_x-1), debug_shape[1]+2*(kernel_y-1), out_colors))\n", |
| 188 | + "padded[kernel_x-1:kernel_x-1+debug_shape[0], kernel_y-1:kernel_y-1+debug_shape[1]]=debug_weights" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": 11, |
| 194 | + "metadata": { |
| 195 | + "collapsed": false, |
| 196 | + "deletable": true, |
| 197 | + "editable": true |
| 198 | + }, |
| 199 | + "outputs": [], |
| 200 | + "source": [ |
| 201 | + "import matplotlib.pyplot as plt\n", |
| 202 | + "%matplotlib inline" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "code", |
| 207 | + "execution_count": 12, |
| 208 | + "metadata": { |
| 209 | + "collapsed": false, |
| 210 | + "deletable": true, |
| 211 | + "editable": true |
| 212 | + }, |
| 213 | + "outputs": [ |
| 214 | + { |
| 215 | + "data": { |
| 216 | + "text/plain": [ |
| 217 | + "<matplotlib.image.AxesImage at 0x7f6ce875cac8>" |
| 218 | + ] |
| 219 | + }, |
| 220 | + "execution_count": 12, |
| 221 | + "metadata": {}, |
| 222 | + "output_type": "execute_result" |
| 223 | + }, |
| 224 | + { |
| 225 | + "data": { |
| 226 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASYAAAD8CAYAAADaFgknAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACx9JREFUeJzt3W+o3YV9x/H3Z7kxadJSO1bKTGTmgTiCdFouna3QB8ZR\n24ruwR4os7TbIE/W1pZCUfagz8ZgpbSw0hHsP2hQRuqYlK7q+ocx2KTXKK1J+kdsq9E4U7a10oGJ\n9LsH97gld4kJ5/czv6/9vV8Qcs/Jyfl98Hrf/s65x3tSVUhSJ78x9QBJ2sgwSWrHMElqxzBJascw\nSWrHMElqxzBJascwSWrHMElqZ+VCHuyibKmtbL+Qh5TUyPP858+q6o3nut0FDdNWtvP72XMhDymp\nkX+qAz89n9v5UE5SO4ZJUjuGSVI7hklSO4ZJUjuDwpTkhiQ/SPJ4kjvGGiVp3pYOU5JNwGeAdwG7\ngVuT7B5rmKT5GnLG9Fbg8ap6oqpOAPcAN48zS9KcDQnTDuCpUy4fXVx3miR7k6wlWTvJCwMOJ2ku\nXvEnv6tqX1WtVtXqZra80oeT9GtgSJieBi495fLOxXWSNMiQMH0HuDzJriQXAbcA940zS9KcLf0/\n8VbVi0k+ANwPbAI+X1WHRlsmabYG/XSBqvoa8LWRtkgS4Cu/JTVkmCS1Y5gktWOYJLVzQX+0bnf3\nP/Po1BOkQd55yVVTTxiFZ0yS2jFMktoxTJLaMUyS2jFMktoxTJLaMUyS2jFMktoxTJLaMUyS2jFM\nktoxTJLaMUyS2jFMktoxTJLaMUyS2jFMktoxTJLaMUyS2jFMktoxTJLaMUyS2jFMktoxTJLaMUyS\n2lk6TEkuTfKtJIeTHEpy+5jDJM3XkLcIfxH4aFUdTPI64OEkD1bV4ZG2SZqppc+YqupYVR1cfPw8\ncATYMdYwSfM1ynNMSS4DrgYeGuP+JM3bkIdyACR5LfAV4MNV9Ysz/PleYC/AVrYNPZykGRh0xpRk\nM+tR2l9V957pNlW1r6pWq2p1M1uGHE7STAz5rlyAzwFHquqT402SNHdDzpiuBd4LXJfk0cWvd4+0\nS9KMLf0cU1X9C5ARt0gS4Cu/JTVkmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVj\nmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOY\nJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLUzOExJNiV5JMlXxxgkSWOcMd0OHBnhfiQJGBimJDuB\n9wB3jTNHkoafMX0K+Bjwq7PdIMneJGtJ1k7ywsDDSZqDpcOU5Ebguap6+OVuV1X7qmq1qlY3s2XZ\nw0makSFnTNcCNyX5CXAPcF2SL4+yStKsLR2mqrqzqnZW1WXALcA3q+q20ZZJmi1fxySpnZUx7qSq\nvg18e4z7kiTPmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVj\nmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOY\nJLVjmCS1Y5gktWOYJLUzKExJLk5yIMn3kxxJ8raxhkmar5WBf//TwNer6o+SXARsG2GTpJlbOkxJ\nXg+8A3g/QFWdAE6MM0vSnA15KLcLOA58IckjSe5Ksn2kXZJmbEiYVoC3AJ+tqquBXwJ3bLxRkr1J\n1pKsneSFAYeTNBdDwnQUOFpVDy0uH2A9VKepqn1VtVpVq5vZMuBwkuZi6TBV1bPAU0muWFy1Bzg8\nyipJszb0u3IfBPYvviP3BPAnwydJmrtBYaqqR4HVkbZIEuArvyU1ZJgktWOYJLVjmCS1Y5gktWOY\nJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gk\ntWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1Y5gktWOYJLVjmCS1MyhMST6S5FCSx5Lc\nnWTrWMMkzdfSYUqyA/gQsFpVVwKbgFvGGiZpvoY+lFsBXpNkBdgGPDN8kqS5WzpMVfU08AngSeAY\n8POqemDj7ZLsTbKWZO0kLyy/VNJsDHko9wbgZmAXcAmwPcltG29XVfuqarWqVjezZfmlkmZjyEO5\n64EfV9XxqjoJ3Au8fZxZkuZsSJieBK5Jsi1JgD3AkXFmSZqzIc8xPQQcAA4C31vc176RdkmasZUh\nf7mqPg58fKQtkgT4ym9JDRkmSe0YJkntGCZJ7RgmSe0YJkntGCZJ7RgmSe0YJkntGCZJ7RgmSe0Y\nJkntGCZJ7RgmSe0YJkntGCZJ7RgmSe0YJkntGCZJ7RgmSe0YJkntGCZJ7RgmSe0YJkntDHrDy183\n77zkqqknSMIzJkkNGSZJ7RgmSe0YJkntGCZJ7ZwzTEk+n+S5JI+dct1vJnkwyY8Wv7/hlZ0paU7O\n54zpi8ANG667A/hGVV0OfGNxWZJGcc4wVdU/A/+x4eqbgS8tPv4S8Icj75I0Y8s+x/Smqjq2+PhZ\n4E0j7ZGk4U9+V1UBdbY/T7I3yVqStZO8MPRwkmZg2TD9e5LfBlj8/tzZblhV+6pqtapWN7NlycNJ\nmpNlw3Qf8L7Fx+8D/mGcOZJ0fi8XuBv4V+CKJEeT/BnwV8AfJPkRcP3isiSN4pw/XaCqbj3LH+0Z\neYskAb7yW1JDhklSO4ZJUjuGSVI7hklSO1l/4fYFOlhyHPjpedz0t4CfvcJzltV5G/Te13kb9N7X\neRuc/77fqao3nutGFzRM5yvJWlWtTr3jTDpvg977Om+D3vs6b4Px9/lQTlI7hklSO13DtG/qAS+j\n8zbova/zNui9r/M2GHlfy+eYJM1b1zMmSTPWKkxJbkjygySPJ2n1c8STXJrkW0kOJzmU5PapN22U\nZFOSR5J8deotGyW5OMmBJN9PciTJ26be9JIkH1l8Th9LcneSrRPvaf0GIGfZ99eLz+13k/x9kouH\nHKNNmJJsAj4DvAvYDdyaZPe0q07zIvDRqtoNXAP8ebN9ALcDR6YecRafBr5eVb8L/B5NdibZAXwI\nWK2qK4FNwC3Trmr/BiBf5P/vexC4sqreDPwQuHPIAdqECXgr8HhVPVFVJ4B7WH/Tgxaq6lhVHVx8\n/DzrX1g7pl31f5LsBN4D3DX1lo2SvB54B/A5gKo6UVX/Ne2q06wAr0myAmwDnplyTPc3ADnTvqp6\noKpeXFz8N2DnkGN0CtMO4KlTLh+l0Rf+qZJcBlwNPDTtktN8CvgY8Kuph5zBLuA48IXFQ827kmyf\nehRAVT0NfAJ4EjgG/LyqHph21Rm9mt4A5E+BfxxyB53C9KqQ5LXAV4APV9Uvpt4DkORG4Lmqenjq\nLWexArwF+GxVXQ38kibvRbh4ruZm1uN5CbA9yW3Trnp553oDkCkl+QvWn/bYP+R+OoXpaeDSUy7v\nXFzXRpLNrEdpf1XdO/WeU1wL3JTkJ6w/BL4uyZennXSao8DRqnrpDPMA66Hq4Hrgx1V1vKpOAvcC\nb59405mc9xuATCXJ+4EbgT+uga9D6hSm7wCXJ9mV5CLWn4C8b+JN/ytJWH+O5EhVfXLqPaeqqjur\namdVXcb6P7dvVlWb/+pX1bPAU0muWFy1Bzg84aRTPQlck2Tb4nO8hyZPzG/Q+g1AktzA+lMJN1XV\nfw+9vzZhWjxx9gHgftb/xfi7qjo07arTXAu8l/WzkUcXv9499ahXkQ8C+5N8F7gK+MuJ9wCwOIs7\nABwEvsf618Skr7Lu/gYgZ9n3N8DrgAcXXxt/O+gYvvJbUjdtzpgk6SWGSVI7hklSO4ZJUjuGSVI7\nhklSO4ZJUjuGSVI7/wPX24/f+sdr0AAAAABJRU5ErkJggg==\n", |
| 227 | + "text/plain": [ |
| 228 | + "<matplotlib.figure.Figure at 0x7f6ceaa4e0f0>" |
| 229 | + ] |
| 230 | + }, |
| 231 | + "metadata": {}, |
| 232 | + "output_type": "display_data" |
| 233 | + } |
| 234 | + ], |
| 235 | + "source": [ |
| 236 | + "plt.imshow((padded>0).sum(axis=-1))" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": 13, |
| 242 | + "metadata": { |
| 243 | + "collapsed": true, |
| 244 | + "deletable": true, |
| 245 | + "editable": true |
| 246 | + }, |
| 247 | + "outputs": [], |
| 248 | + "source": [ |
| 249 | + "backward_weights=weights[::-1,::-1].transpose((0,1,3,2))" |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": 14, |
| 255 | + "metadata": { |
| 256 | + "collapsed": false, |
| 257 | + "deletable": true, |
| 258 | + "editable": true |
| 259 | + }, |
| 260 | + "outputs": [], |
| 261 | + "source": [ |
| 262 | + "grads=forward(padded, backward_weights)" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": 15, |
| 268 | + "metadata": { |
| 269 | + "collapsed": false, |
| 270 | + "deletable": true, |
| 271 | + "editable": true |
| 272 | + }, |
| 273 | + "outputs": [ |
| 274 | + { |
| 275 | + "data": { |
| 276 | + "text/plain": [ |
| 277 | + "(10, 11, 5)" |
| 278 | + ] |
| 279 | + }, |
| 280 | + "execution_count": 15, |
| 281 | + "metadata": {}, |
| 282 | + "output_type": "execute_result" |
| 283 | + } |
| 284 | + ], |
| 285 | + "source": [ |
| 286 | + "grads.shape" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "code", |
| 291 | + "execution_count": 18, |
| 292 | + "metadata": { |
| 293 | + "collapsed": false, |
| 294 | + "deletable": true, |
| 295 | + "editable": true |
| 296 | + }, |
| 297 | + "outputs": [], |
| 298 | + "source": [ |
| 299 | + "eps=1e-4\n", |
| 300 | + "tol=1e-8\n", |
| 301 | + "\n", |
| 302 | + "for idx in np.ndindex(im.shape):\n", |
| 303 | + " d_im=im.copy()\n", |
| 304 | + " d_im[idx]+=eps\n", |
| 305 | + " d_out=forward(d_im, weights)\n", |
| 306 | + " d_debug_out=np.sum(d_out*debug_weights)\n", |
| 307 | + "\n", |
| 308 | + " grad=(d_debug_out-debug_out)/eps\n", |
| 309 | + " \n", |
| 310 | + " assert np.abs(grad-grads[idx])<tol, idx" |
| 311 | + ] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "code", |
| 315 | + "execution_count": null, |
| 316 | + "metadata": { |
| 317 | + "collapsed": true |
| 318 | + }, |
| 319 | + "outputs": [], |
| 320 | + "source": [] |
| 321 | + } |
| 322 | + ], |
| 323 | + "metadata": { |
| 324 | + "kernelspec": { |
| 325 | + "display_name": "Python 3", |
| 326 | + "language": "python", |
| 327 | + "name": "python3" |
| 328 | + }, |
| 329 | + "language_info": { |
| 330 | + "codemirror_mode": { |
| 331 | + "name": "ipython", |
| 332 | + "version": 3 |
| 333 | + }, |
| 334 | + "file_extension": ".py", |
| 335 | + "mimetype": "text/x-python", |
| 336 | + "name": "python", |
| 337 | + "nbconvert_exporter": "python", |
| 338 | + "pygments_lexer": "ipython3", |
| 339 | + "version": "3.5.2" |
| 340 | + } |
| 341 | + }, |
| 342 | + "nbformat": 4, |
| 343 | + "nbformat_minor": 2 |
| 344 | +} |
0 commit comments