-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_RAG.py
439 lines (363 loc) · 13.9 KB
/
local_RAG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import subprocess
import os
import sys
from typing import List, Dict
import whisper
from openai import OpenAI
import uuid
import weaviate
from weaviate.util import get_valid_uuid
from unstructured.chunking.title import chunk_by_title
from unstructured.documents.elements import DataSourceMetadata
from unstructured.partition.json import partition_json
from sentence_transformers import SentenceTransformer
from langchain.llms import LlamaCpp
from langchain.vectorstores.weaviate import Weaviate
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.prompts import PromptTemplate
import tiktoken
from colors import color
from dotenv import load_dotenv
import mimetypes
mimetypes.init()
load_dotenv()
openai_key = os.getenv("OPENAI_KEY")
if openai_key == "<YOUR_OPENAI_KEY>":
openai_key = ""
if openai_key == "":
sys.exit("Please Provide Your OpenAI API Key")
output_dir = 'my-docs'
input_dir = 'files_used'
weaviate_url = "http://localhost:8080"
embedding_model_name = 'all-MiniLM-L6-v2'
device = 'mps'
root = os.path.dirname(__file__)
use_verbose = True
whisper_model = whisper.load_model("tiny", device="cpu", download_root="model_files")
use_openai = False
def process_local(output_dir: str, num_processes: int, input_path: str):
command = [
"unstructured-ingest",
"local",
"--input-path", input_path,
"--output-dir", output_dir,
"--num-processes", str(num_processes),
"--recursive",
]
if use_verbose:
command.append("--verbose")
# Run the command
process = subprocess.Popen(command, stdout=subprocess.PIPE)
output, error = process.communicate()
# Print output
if process.returncode != 0:
print('Command failed. Error:')
print(error.decode())
def get_result_files(folder_path) -> List[Dict]:
file_list = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith('.json'):
_file_path = os.path.join(root, file)
file_list.append(_file_path)
return file_list
all_input_files = os.listdir(input_dir)
for input_file in all_input_files:
file_path = os.path.join(root, input_dir, input_file)
mime_start = mimetypes.guess_type(file_path)[0]
if mime_start is not None:
mime_start = mime_start.split('/')[0]
if mime_start in ['audio', 'video']:
print(f"media types : {file_path}")
result = whisper_model.transcribe(file_path, fp16=False)
with open(file_path + ".txt", "w", encoding="utf-8") as txt:
txt.write(result["text"])
process_local(output_dir=output_dir, num_processes=2, input_path=input_dir)
files = get_result_files(output_dir)
def create_local_weaviate_client(db_url: str):
return weaviate.Client(
url=db_url,
)
def get_schema(vectorizer: str = "none"):
return {
"classes": [
{
"class": "Doc",
"description": "A generic document class",
"vectorizer": vectorizer,
"properties": [
{
"name": "last_modified",
"dataType": ["text"],
"description": "Last modified date for the document",
},
{
"name": "document_page_number",
"dataType": ["int"],
"description": "Text element page number",
},
{
"name": "text",
"dataType": ["text"],
"description": "Text content for the document",
},
{
"name": "element_parent_id",
"dataType": ["text"],
"description": "Text element parent id, can be none"
},
# region file
{
"name": "document_file_name",
"dataType": ["text"],
"description": "Document file name",
},
{
"name": "document_file_directory",
"dataType": ["text"],
"description": "Document file location directory",
},
{
"name": "document_file_type",
"dataType": ["text"],
"description": "Document file mime type",
},
{
"name": "document_file_path",
"dataType": ["text"],
"description": "document file path",
},
{
"name": "original_filename",
"dataType": ["text"],
"description": "original filename",
},
{
"name": "original_file_content",
"dataType": ["text"],
"description": "original file content",
}
# endregion
],
},
],
}
def upload_schema(my_schema, weaviate):
weaviate.schema.delete_all()
weaviate.schema.create(my_schema)
def count_documents(client: weaviate.Client) -> Dict:
response = (
client.query
.aggregate("Doc")
.with_meta_count()
.do()
)
count = response
return count
client = create_local_weaviate_client(db_url=weaviate_url)
my_schema = get_schema()
upload_schema(my_schema, weaviate=client)
embedding_model_path = "model_files/" + embedding_model_name
embedding_model_path = os.path.join(root, embedding_model_path)
embedding_model = SentenceTransformer(embedding_model_name, device=device)
embedding_model.save(
path=embedding_model_path
)
def compute_embedding(chunk_text: List[str]):
embeddings = embedding_model.encode(chunk_text, device=device)
return embeddings
def get_chunks(elements, chunk_under_n_chars=500, chunk_new_after_n_chars=1500):
for element in elements:
if not type(element.metadata.data_source) is DataSourceMetadata:
delattr(element.metadata, "data_source")
if hasattr(element.metadata, "coordinates"):
delattr(element.metadata, "coordinates")
chunks = chunk_by_title(
elements,
combine_under_n_chars=chunk_under_n_chars,
new_after_n_chars=chunk_new_after_n_chars
)
for i in range(len(chunks)):
original_filename = chunks[i].metadata.filename.replace(".json", "")
file_path = os.path.join(root, input_dir, original_filename)
original_file_content = open(file_path, "r").read()
chunks[i] = {
"last_modified": chunks[i].metadata.last_modified,
"document_page_number": chunks[i].metadata.page_number,
"text": chunks[i].text,
"element_parent_id": chunks[i].metadata.parent_id,
# region file
"document_file_name": chunks[i].metadata.filename,
"document_file_directory": chunks[i].metadata.file_directory,
"document_file_path": os.path.join(root,
chunks[i].metadata.file_directory + "/" + chunks[i].metadata.filename),
# "document_file_path": "./" + chunks[i].metadata.file_directory + "/" + chunks[i].metadata.filename,
"document_file_type": chunks[i].metadata.filetype,
"original_filename": original_filename,
"original_file_content": original_file_content
# endregion
}
chunk_texts = [x['text'] for x in chunks]
embeddings = compute_embedding(chunk_texts)
return chunks, embeddings
def add_data_to_weaviate(files, client, chunk_under_n_chars=500, chunk_new_after_n_chars=1500):
for filename in files:
try:
elements = partition_json(filename=filename)
chunks, embeddings = get_chunks(elements, chunk_under_n_chars, chunk_new_after_n_chars)
except IndexError as e:
print(e)
continue
if use_verbose:
print(f"Uploading {len(chunks)} chunks for {str(filename)}.")
for i, chunk in enumerate(chunks):
if len(files) > 1:
client.batch.add_data_object(
data_object=chunk,
class_name="doc",
uuid=get_valid_uuid(uuid.uuid4()),
vector=embeddings[i],
)
else:
client.data_object.create(
data_object=chunk,
class_name="doc",
uuid=get_valid_uuid(uuid.uuid4()),
vector=embeddings[i]
)
if len(files) > 1:
client.batch.flush()
add_data_to_weaviate(
files=files,
client=client,
chunk_under_n_chars=250,
chunk_new_after_n_chars=500
)
#
# print("count documents with class name 'Doc' : ", count_documents(client=client)['data']['Aggregate']['Doc'])
print("count documents with class name 'Doc' : ", count_documents(client=client))
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
n_gpu_layers = 1 # Metal set to 1 is enough.
n_batch = 100 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
# Make sure the model path is correct for your system!
if use_openai:
llm = OpenAI(
api_key=openai_key
)
else:
llm = LlamaCpp(
model_path="model_files/llama-2-7b-chat.Q4_K_S.gguf",
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
n_ctx=2048,
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
callback_manager=callback_manager,
verbose=use_verbose, # Verbose is required to pass to the callback manager
)
def tokenizer(msg, model="text-similarity-davinci-001", show=False):
encoder = tiktoken.encoding_for_model(model)
color_pallet = (
'#FFB347', # Pastel orange (淡橙色)
'#FFCC99', # Peach (桃色)
'#FFFF66', # Pastel yellow (淡黃色)
'#64fa64', # Tea green (茶綠色)
'#CCFFCC', # Aero blue (天青色)
'#CB99C9', # Thistle (薊色)
'#FFB6C1', # Light pink (淺粉紅色)
'#FFCCDD', # Pink lace (粉翠珠色)
'#CCCCFF' # Lavender blue (薰衣草藍)
)
idx = 0
tokens = encoder.encode(msg)
if show:
for token in tokens:
print(color(encoder.decode([token]),
bg=color_pallet[idx],
fg='black'),
end='')
idx = (idx + 1) % len(color_pallet)
print()
return tokens
def question_answer(question: str, vectorstore: Weaviate):
embedding = compute_embedding(question)
# vector_similar_docs = vectorstore.max_marginal_relevance_search_by_vector(embedding)
vector_similar_docs = vectorstore.similarity_search_by_vector(embedding)
# vector_similar_docs = vectorstore.max_marginal_relevance_search(question)
original_file_content = [x.metadata["original_file_content"] for x in vector_similar_docs]
original_file_content = list(dict.fromkeys(original_file_content))
content = [x.page_content for x in vector_similar_docs]
# get page content
if use_openai:
prompt = """
你是學校秘書,據所有的背景信息,用繁體中文回答問題,當中不要超過150字如果。如果我說'''背景信息未完''',請不要回答,直至我說'''背景信息完成'''才回答。
問題:{question}
背景信息:
{context}
原文:
{original_doc}
'''背景信息提供完成'''
"""
prompt_template = PromptTemplate.from_template(prompt)
else:
prompt_template = PromptTemplate.from_template(
"""\
Given context about the subject, answer the question based on the context provided to the best of your ability.
Context: {context}
Question:
{question}
Original file content: {original_doc}
Answer:
"""
)
prompt = prompt_template.format(context=content, question=question, original_doc=original_file_content)
if use_openai:
messages = [{'role': 'user', 'content': prompt}]
response = llm.chat.completions.create(
model='gpt-4-1106-preview',
# model='gpt-3.5-turbo',
messages=messages,
stream=True
)
llm_answer = ""
for chunk in response:
content = chunk.choices[0].delta.content
if content is not None:
llm_answer += content
else:
llm_answer = llm(prompt)
return llm_answer, vector_similar_docs
# region create a vectorstore client
client = weaviate.Client(weaviate_url)
vectorstore = Weaviate(
client,
"Doc",
"text",
attributes=[
"last_modified",
"document_page_number",
"element_parent_id",
"document_file_name",
"document_file_directory",
"document_file_type",
"document_file_path",
"original_filename",
"original_file_content"
]
)
# endregion
# region ask a question to request answer
question = "24班資訊科技綜合津貼"
from opencc import OpenCC
converter = OpenCC('s2t')
answer, similar_docs = question_answer(question, vectorstore)
print("\n\n-------------------------")
print(f"QUERY: {question}")
print("\n-------------------------")
print(f"Answer: {converter.convert(answer)}")
print("\n-------------------------")
for index, result in enumerate(similar_docs):
print(f"\n-- RESULT {index + 1}:\n")
print("doc page content : ", {"page_content": result.page_content})
print("doc metadata : ", {"metadata": result.metadata})
# endregion