Skip to content

Commit 7d9d622

Browse files
authored
feat: BitVec and Int results for finite types (#7685)
This PR contains additional material about `BitVec` and `Int` spun off from #7592.
1 parent 183463c commit 7d9d622

File tree

5 files changed

+77
-24
lines changed

5 files changed

+77
-24
lines changed

src/Init/Data/BitVec/Bitblast.lean

+20-2
Original file line numberDiff line numberDiff line change
@@ -588,13 +588,31 @@ theorem zero_sle_eq_not_msb {w : Nat} {x : BitVec w} : BitVec.sle 0#w x = !x.msb
588588
theorem zero_sle_iff_msb_eq_false {w : Nat} {x : BitVec w} : BitVec.sle 0#w x ↔ x.msb = false := by
589589
simp [zero_sle_eq_not_msb]
590590

591-
theorem toNat_toInt_of_sle {w : Nat} (b : BitVec w) (hb : BitVec.sle 0#w b) : b.toInt.toNat = b.toNat :=
592-
toNat_toInt_of_msb b (zero_sle_iff_msb_eq_false.1 hb)
591+
theorem toNat_toInt_of_sle {w : Nat} (x : BitVec w) (hx : BitVec.sle 0#w x) : x.toInt.toNat = x.toNat :=
592+
toNat_toInt_of_msb x (zero_sle_iff_msb_eq_false.1 hx)
593593

594594
theorem sle_eq_carry (x y : BitVec w) :
595595
x.sle y = !((x.msb == y.msb).xor (carry w y (~~~x) true)) := by
596596
rw [sle_eq_not_slt, slt_eq_not_carry, beq_comm]
597597

598+
theorem neg_slt_zero (h : 0 < w) (x : BitVec w) :
599+
(-x).slt 0#w = ((x == intMin w) || (0#w).slt x) := by
600+
rw [slt_zero_eq_msb, msb_neg, slt_eq_sle_and_ne, zero_sle_eq_not_msb]
601+
apply Bool.eq_iff_iff.2
602+
cases hmsb : x.msb with
603+
| false => simpa [ne_intMin_of_msb_eq_false h hmsb] using Decidable.not_iff_not.2 (eq_comm)
604+
| true =>
605+
simp only [Bool.bne_true, Bool.not_and, Bool.or_eq_true, Bool.not_eq_eq_eq_not, Bool.not_true,
606+
bne_eq_false_iff_eq, Bool.false_and, Bool.or_false, beq_iff_eq,
607+
_root_.or_iff_right_iff_imp]
608+
rintro rfl
609+
simp at hmsb
610+
611+
theorem neg_sle_zero (h : 0 < w) (x : BitVec w) :
612+
(-x).sle 0#w = (x == intMin w || (0#w).sle x) := by
613+
rw [sle_eq_slt_or_eq, neg_slt_zero h, sle_eq_slt_or_eq]
614+
simp [Bool.beq_eq_decide_eq (-x), Bool.beq_eq_decide_eq _ x, Eq.comm (a := x), Bool.or_assoc]
615+
598616
/-! ### mul recurrence for bitblasting -/
599617

600618
/--

src/Init/Data/BitVec/Lemmas.lean

+49-21
Original file line numberDiff line numberDiff line change
@@ -732,7 +732,7 @@ theorem le_toInt {w : Nat} (x : BitVec w) : -2 ^ (w - 1) ≤ x.toInt := by
732732
rw [(show w = w - 1 + 1 by omega), Int.pow_succ] at this
733733
omega
734734

735-
/-! ### slt -/
735+
/-! ### sle/slt -/
736736

737737
/--
738738
A bitvector, when interpreted as an integer, is less than zero iff
@@ -756,12 +756,21 @@ theorem slt_zero_iff_msb_cond {x : BitVec w} : x.slt 0#w ↔ x.msb = true := by
756756
theorem slt_zero_eq_msb {w : Nat} {x : BitVec w} : x.slt 0#w = x.msb := by
757757
rw [Bool.eq_iff_iff, BitVec.slt_zero_iff_msb_cond]
758758

759-
theorem sle_iff_toInt_le {w : Nat} {b b' : BitVec w} : b.sle b'b.toInt ≤ b'.toInt :=
759+
theorem sle_iff_toInt_le {w : Nat} {x y : BitVec w} : x.sle yx.toInt ≤ y.toInt :=
760760
decide_eq_true_iff
761761

762-
theorem slt_iff_toInt_lt {w : Nat} {b b' : BitVec w} : b.slt b'b.toInt < b'.toInt :=
762+
theorem slt_iff_toInt_lt {w : Nat} {x y : BitVec w} : x.slt yx.toInt < y.toInt :=
763763
decide_eq_true_iff
764764

765+
theorem sle_eq_slt_or_eq {x y : BitVec w} : x.sle y = (x.slt y || x == y) := by
766+
apply Bool.eq_iff_iff.2
767+
simp only [BitVec.sle, decide_eq_true_eq, BitVec.slt, Bool.or_eq_true, beq_iff_eq, ← toInt_inj]
768+
omega
769+
770+
theorem slt_eq_sle_and_ne {x y : BitVec w} : x.slt y = (x.sle y && x != y) := by
771+
apply Bool.eq_iff_iff.2
772+
simp [BitVec.slt, BitVec.sle, Int.lt_iff_le_and_ne, BitVec.toInt_inj]
773+
765774
/-! ### setWidth, zeroExtend and truncate -/
766775

767776
@[simp]
@@ -1618,10 +1627,20 @@ theorem not_not {b : BitVec w} : ~~~(~~~b) = b := by
16181627
protected theorem not_inj {x y : BitVec w} : ~~~x = ~~~y ↔ x = y :=
16191628
fun h => by rw [← @not_not w x, ← @not_not w y, h], congrArg _⟩
16201629

1621-
@[simp] theorem and_not_self (x : BitVec n) : x &&& ~~~x = 0 := by
1630+
@[simp] theorem and_not_self (x : BitVec w) : x &&& ~~~x = 0 := by
16221631
ext i
16231632
simp_all
16241633

1634+
@[simp] theorem not_and_self (x : BitVec w) : ~~~x &&& x = 0 := by
1635+
simp [and_comm]
1636+
1637+
@[simp] theorem or_not_self (x : BitVec w) : x ||| ~~~x = allOnes w := by
1638+
ext
1639+
simp
1640+
1641+
@[simp] theorem not_or_self (x : BitVec w) : ~~~x ||| x = allOnes w := by
1642+
simp [or_comm]
1643+
16251644
theorem not_eq_comm {x y : BitVec w} : ~~~ x = y ↔ x = ~~~ y := by
16261645
constructor
16271646
· intro h
@@ -3377,21 +3396,8 @@ theorem sub_eq_self {x : BitVec 1} : -x = x := by
33773396
have ha : x = 0 ∨ x = 1 := eq_zero_or_eq_one _
33783397
rcases ha with h | h <;> simp [h]
33793398

3380-
theorem not_neg (x : BitVec w) : ~~~(-x) = x + -1#w := by
3381-
rcases w with _ | w
3382-
· apply Subsingleton.elim
3383-
· rw [BitVec.not_eq_comm]
3384-
apply BitVec.eq_of_toNat_eq
3385-
simp only [BitVec.toNat_neg, BitVec.toNat_not, BitVec.toNat_add, BitVec.toNat_ofNat,
3386-
Nat.add_mod_mod]
3387-
by_cases hx : x.toNat = 0
3388-
· simp [hx]
3389-
· rw [show (_ - 1 % _) = _ by rw [Nat.mod_eq_of_lt (by omega)],
3390-
show _ + (_ - 1) = (x.toNat - 1) + 2^(w + 1) by omega,
3391-
Nat.add_mod_right,
3392-
show (x.toNat - 1) % _ = _ by rw [Nat.mod_eq_of_lt (by omega)],
3393-
show (_ - x.toNat) % _ = _ by rw [Nat.mod_eq_of_lt (by omega)]]
3394-
omega
3399+
theorem not_neg (x : BitVec w) : ~~~(-x) = x - 1#w := by
3400+
rw [not_eq_neg_add, neg_neg]
33953401

33963402
theorem neg_add {x y : BitVec w} : - (x + y) = - x - y := by
33973403
apply eq_of_toInt_eq
@@ -3982,6 +3988,18 @@ theorem srem_eq (x y : BitVec w) : srem x y =
39823988
rw [BitVec.srem]
39833989
rcases x.msb <;> rcases y.msb <;> simp
39843990

3991+
@[simp] theorem srem_zero {x : BitVec w} : x.srem 0#w = x := by
3992+
cases h : x.msb <;> simp [h, srem_eq]
3993+
3994+
@[simp] theorem zero_srem {x : BitVec w} : (0#w).srem x = 0#w := by
3995+
cases h : x.msb <;> simp [h, srem_eq]
3996+
3997+
@[simp] theorem srem_one {x : BitVec w} : x.srem 1#w = 0#w := by
3998+
cases h : x.msb <;> by_cases hw : w = 1 <;> (try subst hw) <;> simp_all [srem_eq]
3999+
4000+
@[simp] theorem srem_self {x : BitVec w} : x.srem x = 0#w := by
4001+
cases h : x.msb <;> simp [h, srem_eq]
4002+
39854003
/-! ### smod -/
39864004

39874005
/-- Equation theorem for `smod` in terms of `umod`. -/
@@ -4017,11 +4035,15 @@ theorem toNat_smod {x y : BitVec w} : (x.smod y).toNat =
40174035
<;> simp [h'', h''']
40184036

40194037
@[simp]
4020-
theorem smod_zero {x : BitVec n} : x.smod 0#n = x := by
4038+
theorem smod_zero {x : BitVec w} : x.smod 0#w = x := by
40214039
simp only [smod_eq, msb_zero]
40224040
rcases x.msb with msb | msb <;> apply eq_of_toNat_eq
40234041
· simp
4024-
· by_cases h : x = 0#n <;> simp [h]
4042+
· by_cases h : x = 0#w <;> simp [h]
4043+
4044+
@[simp]
4045+
theorem zero_smod {x : BitVec w} : (0#w).smod x = 0#w := by
4046+
cases _ : x.msb <;> simp_all [smod_eq]
40254047

40264048
/-! ### ofBoolList -/
40274049

@@ -4751,6 +4773,12 @@ theorem msb_intMin {w : Nat} : (intMin w).msb = decide (0 < w) := by
47514773
simp only [msb_eq_decide, toNat_intMin, decide_eq_decide]
47524774
by_cases h : 0 < w <;> simp_all
47534775

4776+
theorem ne_intMin_of_msb_eq_false (h : 0 < w) {n : BitVec w} (hn : n.msb = false) :
4777+
n ≠ intMin w := by
4778+
rintro rfl
4779+
simp only [msb_intMin, decide_eq_false_iff_not, Nat.not_lt, Nat.le_zero_eq] at hn
4780+
omega
4781+
47544782
/-! ### intMax -/
47554783

47564784
/-- The bitvector of width `w` that has the largest value when interpreted as an integer. -/

src/Init/Data/Int/LemmasAux.lean

+6
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,9 @@ protected theorem sub_eq_iff_eq_add' {b a c : Int} : a - b = c ↔ a = b + c :=
3939
@[simp] theorem neg_ofNat_le_natCast (n m : Nat) : -(no_index (OfNat.ofNat n)) ≤ (m : Int) :=
4040
Int.le_trans (by simp) (ofNat_zero_le m)
4141

42+
theorem neg_lt_self_iff {n : Int} : -n < n ↔ 0 < n := by
43+
omega
44+
4245
/-! ### toNat -/
4346

4447
@[simp] theorem toNat_sub' (a : Int) (b : Nat) : (a - b).toNat = a.toNat - b := by
@@ -70,6 +73,9 @@ protected theorem sub_eq_iff_eq_add' {b a c : Int} : a - b = c ↔ a = b + c :=
7073
@[simp] theorem toNat_le {m : Int} {n : Nat} : m.toNat ≤ n ↔ m ≤ n := by omega
7174
@[simp] theorem toNat_lt' {m : Int} {n : Nat} (hn : 0 < n) : m.toNat < n ↔ m < n := by omega
7275

76+
theorem pos_iff_toNat_pos {n : Int} : 0 < n ↔ 0 < n.toNat := by
77+
omega
78+
7379
/-! ### natAbs -/
7480

7581
theorem eq_zero_of_dvd_of_natAbs_lt_natAbs {d n : Int} (h : d ∣ n) (h₁ : n.natAbs < d.natAbs) :

src/Init/System/Platform.lean

+1
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,7 @@ The LLVM target triple of the current platform. Empty if missing when Lean was c
4949
-/
5050
def target : String := getTarget ()
5151

52+
@[simp]
5253
theorem numBits_pos : 0 < numBits := by
5354
cases numBits_eq <;> next h => simp [h]
5455

src/Std/Tactic/BVDecide/Normalize/BitVec.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ theorem BitVec.neg_add (a : BitVec w) : (~~~a + 1#w) + a = 0#w := by
220220
@[bv_normalize]
221221
theorem BitVec.not_neg (x : BitVec w) : ~~~(~~~x + 1#w) = x + -1#w := by
222222
rw [← BitVec.neg_eq_not_add x]
223-
rw [_root_.BitVec.not_neg]
223+
rw [_root_.BitVec.not_neg, _root_.BitVec.sub_toAdd]
224224

225225
@[bv_normalize]
226226
theorem BitVec.not_neg' (x : BitVec w) : ~~~(x + 1#w) = ~~~x + -1#w := by

0 commit comments

Comments
 (0)