@@ -732,7 +732,7 @@ theorem le_toInt {w : Nat} (x : BitVec w) : -2 ^ (w - 1) ≤ x.toInt := by
732
732
rw [(show w = w - 1 + 1 by omega), Int.pow_succ] at this
733
733
omega
734
734
735
- /-! ### slt -/
735
+ /-! ### sle/ slt -/
736
736
737
737
/--
738
738
A bitvector, when interpreted as an integer, is less than zero iff
@@ -756,12 +756,21 @@ theorem slt_zero_iff_msb_cond {x : BitVec w} : x.slt 0#w ↔ x.msb = true := by
756
756
theorem slt_zero_eq_msb {w : Nat} {x : BitVec w} : x.slt 0 #w = x.msb := by
757
757
rw [Bool.eq_iff_iff, BitVec.slt_zero_iff_msb_cond]
758
758
759
- theorem sle_iff_toInt_le {w : Nat} {b b' : BitVec w} : b .sle b' ↔ b .toInt ≤ b' .toInt :=
759
+ theorem sle_iff_toInt_le {w : Nat} {x y : BitVec w} : x .sle y ↔ x .toInt ≤ y .toInt :=
760
760
decide_eq_true_iff
761
761
762
- theorem slt_iff_toInt_lt {w : Nat} {b b' : BitVec w} : b .slt b' ↔ b .toInt < b' .toInt :=
762
+ theorem slt_iff_toInt_lt {w : Nat} {x y : BitVec w} : x .slt y ↔ x .toInt < y .toInt :=
763
763
decide_eq_true_iff
764
764
765
+ theorem sle_eq_slt_or_eq {x y : BitVec w} : x.sle y = (x.slt y || x == y) := by
766
+ apply Bool.eq_iff_iff.2
767
+ simp only [BitVec.sle, decide_eq_true_eq, BitVec.slt, Bool.or_eq_true, beq_iff_eq, ← toInt_inj]
768
+ omega
769
+
770
+ theorem slt_eq_sle_and_ne {x y : BitVec w} : x.slt y = (x.sle y && x != y) := by
771
+ apply Bool.eq_iff_iff.2
772
+ simp [BitVec.slt, BitVec.sle, Int.lt_iff_le_and_ne, BitVec.toInt_inj]
773
+
765
774
/-! ### setWidth, zeroExtend and truncate -/
766
775
767
776
@[simp]
@@ -1618,10 +1627,20 @@ theorem not_not {b : BitVec w} : ~~~(~~~b) = b := by
1618
1627
protected theorem not_inj {x y : BitVec w} : ~~~x = ~~~y ↔ x = y :=
1619
1628
⟨fun h => by rw [← @not_not w x, ← @not_not w y, h], congrArg _⟩
1620
1629
1621
- @[simp] theorem and_not_self (x : BitVec n ) : x &&& ~~~x = 0 := by
1630
+ @[simp] theorem and_not_self (x : BitVec w ) : x &&& ~~~x = 0 := by
1622
1631
ext i
1623
1632
simp_all
1624
1633
1634
+ @[simp] theorem not_and_self (x : BitVec w) : ~~~x &&& x = 0 := by
1635
+ simp [and_comm]
1636
+
1637
+ @[simp] theorem or_not_self (x : BitVec w) : x ||| ~~~x = allOnes w := by
1638
+ ext
1639
+ simp
1640
+
1641
+ @[simp] theorem not_or_self (x : BitVec w) : ~~~x ||| x = allOnes w := by
1642
+ simp [or_comm]
1643
+
1625
1644
theorem not_eq_comm {x y : BitVec w} : ~~~ x = y ↔ x = ~~~ y := by
1626
1645
constructor
1627
1646
· intro h
@@ -3377,21 +3396,8 @@ theorem sub_eq_self {x : BitVec 1} : -x = x := by
3377
3396
have ha : x = 0 ∨ x = 1 := eq_zero_or_eq_one _
3378
3397
rcases ha with h | h <;> simp [h]
3379
3398
3380
- theorem not_neg (x : BitVec w) : ~~~(-x) = x + -1 #w := by
3381
- rcases w with _ | w
3382
- · apply Subsingleton.elim
3383
- · rw [BitVec.not_eq_comm]
3384
- apply BitVec.eq_of_toNat_eq
3385
- simp only [BitVec.toNat_neg, BitVec.toNat_not, BitVec.toNat_add, BitVec.toNat_ofNat,
3386
- Nat.add_mod_mod]
3387
- by_cases hx : x.toNat = 0
3388
- · simp [hx]
3389
- · rw [show (_ - 1 % _) = _ by rw [Nat.mod_eq_of_lt (by omega)],
3390
- show _ + (_ - 1 ) = (x.toNat - 1 ) + 2 ^(w + 1 ) by omega,
3391
- Nat.add_mod_right,
3392
- show (x.toNat - 1 ) % _ = _ by rw [Nat.mod_eq_of_lt (by omega)],
3393
- show (_ - x.toNat) % _ = _ by rw [Nat.mod_eq_of_lt (by omega)]]
3394
- omega
3399
+ theorem not_neg (x : BitVec w) : ~~~(-x) = x - 1 #w := by
3400
+ rw [not_eq_neg_add, neg_neg]
3395
3401
3396
3402
theorem neg_add {x y : BitVec w} : - (x + y) = - x - y := by
3397
3403
apply eq_of_toInt_eq
@@ -3982,6 +3988,18 @@ theorem srem_eq (x y : BitVec w) : srem x y =
3982
3988
rw [BitVec.srem]
3983
3989
rcases x.msb <;> rcases y.msb <;> simp
3984
3990
3991
+ @[simp] theorem srem_zero {x : BitVec w} : x.srem 0 #w = x := by
3992
+ cases h : x.msb <;> simp [h, srem_eq]
3993
+
3994
+ @[simp] theorem zero_srem {x : BitVec w} : (0 #w).srem x = 0 #w := by
3995
+ cases h : x.msb <;> simp [h, srem_eq]
3996
+
3997
+ @[simp] theorem srem_one {x : BitVec w} : x.srem 1 #w = 0 #w := by
3998
+ cases h : x.msb <;> by_cases hw : w = 1 <;> (try subst hw) <;> simp_all [srem_eq]
3999
+
4000
+ @[simp] theorem srem_self {x : BitVec w} : x.srem x = 0 #w := by
4001
+ cases h : x.msb <;> simp [h, srem_eq]
4002
+
3985
4003
/-! ### smod -/
3986
4004
3987
4005
/-- Equation theorem for `smod` in terms of `umod`. -/
@@ -4017,11 +4035,15 @@ theorem toNat_smod {x y : BitVec w} : (x.smod y).toNat =
4017
4035
<;> simp [h'', h''']
4018
4036
4019
4037
@[simp]
4020
- theorem smod_zero {x : BitVec n } : x.smod 0 #n = x := by
4038
+ theorem smod_zero {x : BitVec w } : x.smod 0 #w = x := by
4021
4039
simp only [smod_eq, msb_zero]
4022
4040
rcases x.msb with msb | msb <;> apply eq_of_toNat_eq
4023
4041
· simp
4024
- · by_cases h : x = 0 #n <;> simp [h]
4042
+ · by_cases h : x = 0 #w <;> simp [h]
4043
+
4044
+ @[simp]
4045
+ theorem zero_smod {x : BitVec w} : (0 #w).smod x = 0 #w := by
4046
+ cases _ : x.msb <;> simp_all [smod_eq]
4025
4047
4026
4048
/-! ### ofBoolList -/
4027
4049
@@ -4751,6 +4773,12 @@ theorem msb_intMin {w : Nat} : (intMin w).msb = decide (0 < w) := by
4751
4773
simp only [msb_eq_decide, toNat_intMin, decide_eq_decide]
4752
4774
by_cases h : 0 < w <;> simp_all
4753
4775
4776
+ theorem ne_intMin_of_msb_eq_false (h : 0 < w) {n : BitVec w} (hn : n.msb = false ) :
4777
+ n ≠ intMin w := by
4778
+ rintro rfl
4779
+ simp only [msb_intMin, decide_eq_false_iff_not, Nat.not_lt, Nat.le_zero_eq] at hn
4780
+ omega
4781
+
4754
4782
/-! ### intMax -/
4755
4783
4756
4784
/-- The bitvector of width `w` that has the largest value when interpreted as an integer. -/
0 commit comments