Skip to content

Commit 912bbcf

Browse files
committedMar 18, 2024
Rename Immersion.differentiable to contMDiff.
1 parent bfd0afb commit 912bbcf

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed
 

‎SphereEversion/Global/Immersion.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -122,13 +122,13 @@ variable {n : ℕ} (E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E]
122122
/-- The inclusion of `𝕊^n` into `ℝ^{n+1}` is an immersion. -/
123123
theorem immersion_inclusion_sphere : Immersion (𝓡 n) 𝓘(ℝ, E)
124124
(fun x : sphere (0 : E) 1 ↦ (x : E)) ⊤ where
125-
differentiable := contMDiff_coe_sphere
125+
contMDiff := contMDiff_coe_sphere
126126
diff_injective := mfderiv_coe_sphere_injective
127127

128128
/-- The antipodal map on `𝕊^n ⊆ ℝ^{n+1}` is an immersion. -/
129129
theorem immersion_antipodal_sphere : Immersion (𝓡 n) 𝓘(ℝ, E)
130130
(fun x : sphere (0 : E) 1 ↦ -(x : E)) ⊤ where
131-
differentiable :=
131+
contMDiff :=
132132
-- Write this as the composition of `coe_sphere` and the antipodal map on `E`.
133133
-- The other direction elaborates much worse.
134134
(contDiff_neg.contMDiff).comp contMDiff_coe_sphere
@@ -334,7 +334,7 @@ theorem sphere_eversion :
334334
rw [this (1, x) (by simp)]
335335
convert formalEversion_one E ω x
336336
· exact fun t ↦ {
337-
differentiable := Smooth.uncurry_left 𝓘(ℝ, ℝ) (𝓡 2) 𝓘(ℝ, E) h₁ t
337+
contMDiff := Smooth.uncurry_left 𝓘(ℝ, ℝ) (𝓡 2) 𝓘(ℝ, E) h₁ t
338338
diff_injective := h₅ t
339339
}
340340

‎SphereEversion/ToMathlib/Geometry/Manifold/Immersion.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ section Definition
5353

5454
/-- A `C^n` immersion `f : M → M` is a `C^n` map whose differential is injective at every point. -/
5555
structure Immersion (f : M → M') (n : ℕ∞) : Prop :=
56-
differentiable : ContMDiff I I' n f
56+
contMDiff : ContMDiff I I' n f
5757
diff_injective : ∀ p, Injective (mfderiv I I' f p)
5858

5959
/-- An injective `C^n` immersion -/

0 commit comments

Comments
 (0)