File tree Expand file tree Collapse file tree 2 files changed +4
-4
lines changed
ToMathlib/Geometry/Manifold Expand file tree Collapse file tree 2 files changed +4
-4
lines changed Original file line number Diff line number Diff line change @@ -122,13 +122,13 @@ variable {n : ℕ} (E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E]
122
122
/-- The inclusion of `𝕊^n` into `ℝ^{n+1}` is an immersion. -/
123
123
theorem immersion_inclusion_sphere : Immersion (𝓡 n) 𝓘(ℝ, E)
124
124
(fun x : sphere (0 : E) 1 ↦ (x : E)) ⊤ where
125
- differentiable := contMDiff_coe_sphere
125
+ contMDiff := contMDiff_coe_sphere
126
126
diff_injective := mfderiv_coe_sphere_injective
127
127
128
128
/-- The antipodal map on `𝕊^n ⊆ ℝ^{n+1}` is an immersion. -/
129
129
theorem immersion_antipodal_sphere : Immersion (𝓡 n) 𝓘(ℝ, E)
130
130
(fun x : sphere (0 : E) 1 ↦ -(x : E)) ⊤ where
131
- differentiable :=
131
+ contMDiff :=
132
132
-- Write this as the composition of `coe_sphere` and the antipodal map on `E`.
133
133
-- The other direction elaborates much worse.
134
134
(contDiff_neg.contMDiff).comp contMDiff_coe_sphere
@@ -334,7 +334,7 @@ theorem sphere_eversion :
334
334
rw [this (1 , x) (by simp)]
335
335
convert formalEversion_one E ω x
336
336
· exact fun t ↦ {
337
- differentiable := Smooth.uncurry_left 𝓘(ℝ, ℝ) (𝓡 2 ) 𝓘(ℝ, E) h₁ t
337
+ contMDiff := Smooth.uncurry_left 𝓘(ℝ, ℝ) (𝓡 2 ) 𝓘(ℝ, E) h₁ t
338
338
diff_injective := h₅ t
339
339
}
340
340
Original file line number Diff line number Diff line change @@ -53,7 +53,7 @@ section Definition
53
53
54
54
/-- A `C^n` immersion `f : M → M` is a `C^n` map whose differential is injective at every point. -/
55
55
structure Immersion (f : M → M') (n : ℕ∞) : Prop :=
56
- differentiable : ContMDiff I I' n f
56
+ contMDiff : ContMDiff I I' n f
57
57
diff_injective : ∀ p, Injective (mfderiv I I' f p)
58
58
59
59
/-- An injective `C^n` immersion -/
You can’t perform that action at this time.
0 commit comments