Skip to content

Commit b4b2e0e

Browse files
committed
intcast too
1 parent 6d681a3 commit b4b2e0e

File tree

2 files changed

+22
-0
lines changed

2 files changed

+22
-0
lines changed

Mathlib/Analysis/Calculus/Deriv/Basic.lean

+17
Original file line numberDiff line numberDiff line change
@@ -647,6 +647,9 @@ theorem hasDerivAtFilter_one [One F] : HasDerivAtFilter (1 : 𝕜 → F) 0 x L :
647647
theorem hasDerivAtFilter_natCast [NatCast F] (n : ℕ) : HasDerivAtFilter (n : 𝕜 → F) 0 x L :=
648648
hasDerivAtFilter_const _ _ _
649649

650+
theorem hasDerivAtFilter_intCast [IntCast F] (z : ℤ) : HasDerivAtFilter (z : 𝕜 → F) 0 x L :=
651+
hasDerivAtFilter_const _ _ _
652+
650653
theorem hasDerivAtFilter_ofNat (n : ℕ) [OfNat F n] : HasDerivAtFilter (ofNat(n) : 𝕜 → F) 0 x L :=
651654
hasDerivAtFilter_const _ _ _
652655

@@ -662,6 +665,9 @@ theorem hasStrictDerivAt_one [One F] : HasStrictDerivAt (1 : 𝕜 → F) 0 x :=
662665
theorem hasStrictDerivAt_natCast [NatCast F] (n : ℕ) : HasStrictDerivAt (n : 𝕜 → F) 0 x :=
663666
hasStrictDerivAt_const _ _
664667

668+
theorem hasStrictDerivAt_intCast [IntCast F] (z : ℤ) : HasStrictDerivAt (z : 𝕜 → F) 0 x :=
669+
hasStrictDerivAt_const _ _
670+
665671
theorem HasStrictDerivAt_ofNat (n : ℕ) [OfNat F n] : HasStrictDerivAt (ofNat(n) : 𝕜 → F) 0 x :=
666672
hasStrictDerivAt_const _ _
667673

@@ -677,6 +683,9 @@ theorem hasDerivWithinAt_one [One F] : HasDerivWithinAt (1 : 𝕜 → F) 0 s x :
677683
theorem hasDerivWithinAt_natCast [NatCast F] (n : ℕ) : HasDerivWithinAt (n : 𝕜 → F) 0 s x :=
678684
hasDerivWithinAt_const _ _ _
679685

686+
theorem hasDerivWithinAt_intCast [IntCast F] (z : ℤ) : HasDerivWithinAt (z : 𝕜 → F) 0 s x :=
687+
hasDerivWithinAt_const _ _ _
688+
680689
theorem hasDerivWithinAt_ofNat (n : ℕ) [OfNat F n] : HasDerivWithinAt (ofNat(n) : 𝕜 → F) 0 s x :=
681690
hasDerivWithinAt_const _ _ _
682691

@@ -692,6 +701,9 @@ theorem hasDerivAt_one [One F] : HasDerivAt (1 : 𝕜 → F) 0 x :=
692701
theorem hasDerivAt_natCast [NatCast F] (n : ℕ) : HasDerivAt (n : 𝕜 → F) 0 x :=
693702
hasDerivAt_const _ _
694703

704+
theorem hasDerivAt_intCast [IntCast F] (z : ℤ) : HasDerivAt (z : 𝕜 → F) 0 x :=
705+
hasDerivAt_const _ _
706+
695707
theorem hasDerivAt_ofNat (n : ℕ) [OfNat F n] : HasDerivAt (ofNat(n) : 𝕜 → F) 0 x :=
696708
hasDerivAt_const _ _
697709

@@ -710,6 +722,8 @@ theorem deriv_one [One F] : deriv (1 : 𝕜 → F) = 0 := funext fun _ => deriv_
710722

711723
theorem deriv_natCast [NatCast F] (n : ℕ) : deriv (n : 𝕜 → F) = 0 := funext fun _ => deriv_const _ _
712724

725+
theorem deriv_intCast [IntCast F] (z : ℤ) : deriv (z : 𝕜 → F) = 0 := funext fun _ => deriv_const _ _
726+
713727
@[simp low]
714728
theorem deriv_ofNat (n : ℕ) [OfNat F n] : deriv (ofNat(n) : 𝕜 → F) = 0 :=
715729
funext fun _ => deriv_const _ _
@@ -727,6 +741,9 @@ theorem derivWithin_one [One F] : derivWithin (1 : 𝕜 → F) s = 0 := derivWit
727741
theorem derivWithin_natCast [NatCast F] (n : ℕ) : derivWithin (n : 𝕜 → F) s = 0 :=
728742
derivWithin_const _ _
729743

744+
theorem derivWithin_intCast [IntCast F] (z : ℤ) : derivWithin (z : 𝕜 → F) s = 0 :=
745+
derivWithin_const _ _
746+
730747
@[simp low]
731748
theorem derivWithin_ofNat (n : ℕ) [OfNat F n] : derivWithin (ofNat(n) : 𝕜 → F) s = 0 :=
732749
derivWithin_const _ _

Mathlib/Analysis/Calculus/FDeriv/Basic.lean

+5
Original file line numberDiff line numberDiff line change
@@ -1060,6 +1060,9 @@ theorem fderivWithin_one [One F] : fderivWithin 𝕜 (1 : E → F) s = 0 := fder
10601060
theorem fderivWithin_natCast [NatCast F] (n : ℕ) : fderivWithin 𝕜 (n : E → F) s = 0 :=
10611061
fderivWithin_const _
10621062

1063+
theorem fderivWithin_intCast [IntCast F] (z : ℤ) : fderivWithin 𝕜 (n : E → F) s = 0 :=
1064+
fderivWithin_const _
1065+
10631066
@[simp low]
10641067
theorem fderivWithin_ofNat (n : ℕ) [OfNat F n] : fderivWithin 𝕜 (ofNat(n) : E → F) s = 0 :=
10651068
fderivWithin_const _
@@ -1079,6 +1082,8 @@ theorem fderiv_one [One F] : fderiv 𝕜 (1 : E → F) = 0 := fderiv_const _
10791082

10801083
theorem fderiv_natCast [NatCast F] (n : ℕ) : fderiv 𝕜 (n : E → F) = 0 := fderiv_const _
10811084

1085+
theorem fderiv_intCast [IntCast F] (z : ℤ) : fderiv 𝕜 (z : E → F) = 0 := fderiv_const _
1086+
10821087
@[simp low]
10831088
theorem fderiv_ofNat (n : ℕ) [OfNat F n] : fderiv 𝕜 (ofNat(n) : E → F) = 0 := fderiv_const _
10841089

0 commit comments

Comments
 (0)