Skip to content

Commit 91842de

Browse files
eric-wieserriccardobrasca
authored andcommitted
refactor: remove @[simp] from Pi.natCast_def and Pi.intCast_def (#23430)
These lemmas prevented general simp lemmas about rings applying to the product ring. Also adds `@[simp]` to a lemma that previously was not simp-normal but now is.
1 parent 7f5f4be commit 91842de

File tree

3 files changed

+5
-6
lines changed

3 files changed

+5
-6
lines changed

Mathlib/Data/Int/Cast/Pi.lean

+2-1
Original file line numberDiff line numberDiff line change
@@ -26,15 +26,16 @@ variable {ι : Type*} {π : ι → Type*} [∀ i, IntCast (π i)]
2626

2727
instance instIntCast : IntCast (∀ i, π i) where intCast n _ := n
2828

29+
@[simp]
2930
theorem intCast_apply (n : ℤ) (i : ι) : (n : ∀ i, π i) i = n :=
3031
rfl
3132

32-
@[simp]
3333
theorem intCast_def (n : ℤ) : (n : ∀ i, π i) = fun _ => ↑n :=
3434
rfl
3535

3636
end Pi
3737

38+
@[simp]
3839
theorem Sum.elim_intCast_intCast {α β γ : Type*} [IntCast γ] (n : ℤ) :
3940
Sum.elim (n : α → γ) (n : β → γ) = n :=
4041
Sum.elim_lam_const_lam_const (γ := γ) n

Mathlib/Data/Nat/Cast/Basic.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -186,10 +186,10 @@ variable [∀ a, NatCast (π a)]
186186

187187
instance instNatCast : NatCast (∀ a, π a) where natCast n _ := n
188188

189+
@[simp]
189190
theorem natCast_apply (n : ℕ) (a : α) : (n : ∀ a, π a) a = n :=
190191
rfl
191192

192-
@[simp]
193193
theorem natCast_def (n : ℕ) : (n : ∀ a, π a) = fun _ ↦ ↑n :=
194194
rfl
195195

Mathlib/RingTheory/WittVector/Basic.lean

+2-4
Original file line numberDiff line numberDiff line change
@@ -174,8 +174,7 @@ private theorem ghostFun_add : ghostFun (x + y) = ghostFun x + ghostFun y := by
174174

175175
private theorem ghostFun_natCast (i : ℕ) : ghostFun (i : 𝕎 R) = i :=
176176
show ghostFun i.unaryCast = _ by
177-
induction i <;>
178-
simp [*, Nat.unaryCast, ghostFun_zero, ghostFun_one, ghostFun_add, -Pi.natCast_def]
177+
induction i <;> simp [*, Nat.unaryCast, ghostFun_zero, ghostFun_one, ghostFun_add]
179178

180179
private theorem ghostFun_sub : ghostFun (x - y) = ghostFun x - ghostFun y := by
181180
ghost_fun_tac X 0 - X 1, ![x.coeff, y.coeff]
@@ -187,8 +186,7 @@ private theorem ghostFun_neg : ghostFun (-x) = -ghostFun x := by ghost_fun_tac -
187186

188187
private theorem ghostFun_intCast (i : ℤ) : ghostFun (i : 𝕎 R) = i :=
189188
show ghostFun i.castDef = _ by
190-
cases i <;> simp [*, Int.castDef, ghostFun_natCast, ghostFun_neg, -Pi.natCast_def,
191-
-Pi.intCast_def]
189+
cases i <;> simp [*, Int.castDef, ghostFun_natCast, ghostFun_neg]
192190

193191
private lemma ghostFun_nsmul (m : ℕ) (x : WittVector p R) : ghostFun (m • x) = m • ghostFun x := by
194192
ghost_fun_tac m • (X 0), ![x.coeff]

0 commit comments

Comments
 (0)