diff --git a/Mathlib.lean b/Mathlib.lean index 4e1ca3ea19c27..91c4268a0344f 100644 --- a/Mathlib.lean +++ b/Mathlib.lean @@ -471,6 +471,7 @@ import Mathlib.CategoryTheory.Adjunction.Whiskering import Mathlib.CategoryTheory.Arrow import Mathlib.CategoryTheory.Balanced import Mathlib.CategoryTheory.Bicategory.Basic +import Mathlib.CategoryTheory.Bicategory.Coherence import Mathlib.CategoryTheory.Bicategory.End import Mathlib.CategoryTheory.Bicategory.Functor import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete diff --git a/Mathlib/CategoryTheory/Bicategory/Coherence.lean b/Mathlib/CategoryTheory/Bicategory/Coherence.lean index 60222449b3b42..14621268415b9 100644 --- a/Mathlib/CategoryTheory/Bicategory/Coherence.lean +++ b/Mathlib/CategoryTheory/Bicategory/Coherence.lean @@ -8,10 +8,10 @@ Authors: Yuma Mizuno, Junyan Xu ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ -import Mathbin.CategoryTheory.PathCategory -import Mathbin.CategoryTheory.Functor.FullyFaithful -import Mathbin.CategoryTheory.Bicategory.Free -import Mathbin.CategoryTheory.Bicategory.LocallyDiscrete +import Mathlib.CategoryTheory.PathCategory +import Mathlib.CategoryTheory.Functor.FullyFaithful +import Mathlib.CategoryTheory.Bicategory.Free +import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete /-! # The coherence theorem for bicategories @@ -81,8 +81,7 @@ as a prelax functor. This will be promoted to a pseudofunctor after proving the See `inclusion`. -/ def preinclusion (B : Type u) [Quiver.{v + 1} B] : - PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) - where + PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where obj := id map a b := (inclusionPath a b).obj zipWith a b f g η := (inclusionPath a b).map η @@ -162,8 +161,7 @@ def normalizeIso {a : B} : `normalize_aux p f = normalize_aux p g`. -/ theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) : - normalizeAux p f = normalizeAux p g := - by + normalizeAux p f = normalizeAux p g := by rcases η with ⟨⟩ apply @congr_fun _ _ fun p => normalize_aux p f clear p @@ -179,8 +177,7 @@ theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) : (preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).Hom = (normalizeIso p f).Hom ≫ - (preinclusion B).zipWith (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := - by + (preinclusion B).zipWith (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by rcases η with ⟨⟩; induction η case id => simp case @@ -203,8 +200,7 @@ theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f @[simp] theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) : - normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := - by + normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by induction g generalizing a case id => rfl case of => rfl @@ -213,8 +209,7 @@ theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) : /-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/ def normalize (B : Type u) [Quiver.{v + 1} B] : - Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) - where + Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where obj := id map a b f := ⟨normalizeAux nil f⟩ zipWith a b f g η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η