Skip to content

Commit 2284df5

Browse files
committed
rename to bergelson and bergelson' for now
1 parent 4187835 commit 2284df5

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

Mathlib/MeasureTheory/Function/Intersectivity.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ This is in some sense a finitary version of the second Borel-Cantelli lemma.
2222
## TODO
2323
2424
Restate the theorem using the upper density of a set of naturals, once we have it. This will make
25-
`strong_bergelson` be actually strong.
25+
`bergelson'` be actually strong (and please then rename it to `strong_bergelson`).
2626
2727
Use the ergodic theorem to deduce the refinement of the Poincaré recurrence theorem proved by
2828
Bergelson.
@@ -37,7 +37,7 @@ variable {ι α : Type*} [MeasurableSpace α] {μ : Measure α} [IsFiniteMeasure
3737
measure at least `r` has an infinite subset whose finite intersections all have positive volume.
3838
3939
TODO: The infinity of `t` should be strengthened to `t` having positive natural density. -/
40-
lemma strong_bergelson {s : ℕ → Set α} (hs : ∀ n, MeasurableSet (s n)) (hr₀ : r ≠ 0)
40+
lemma bergelson' {s : ℕ → Set α} (hs : ∀ n, MeasurableSet (s n)) (hr₀ : r ≠ 0)
4141
(hr : ∀ n, r ≤ μ (s n)) :
4242
∃ t : Set ℕ, t.Infinite ∧ ∀ ⦃u⦄, u ⊆ t → u.Finite → 0 < μ (⋂ n ∈ u, s n) := by
4343
-- We let `M f` be the set on which the norm of `f` exceeds its essential supremum, and `N` be the
@@ -118,11 +118,11 @@ lemma strong_bergelson {s : ℕ → Set α} (hs : ∀ n, MeasurableSet (s n)) (h
118118

119119
/-- **Bergelson Intersectivity Lemma**: In a finite measure space, a sequence of events that have
120120
measure at least `r` has an infinite subset whose finite intersections all have positive volume. -/
121-
lemma weak_bergelson [Infinite ι] {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i)) (hr₀ : r ≠ 0)
121+
lemma bergelson [Infinite ι] {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i)) (hr₀ : r ≠ 0)
122122
(hr : ∀ i, r ≤ μ (s i)) :
123123
∃ t : Set ι, t.Infinite ∧ ∀ ⦃u⦄, u ⊆ t → u.Finite → 0 < μ (⋂ i ∈ u, s i) := by
124124
obtain ⟨t, ht, h⟩ := bergelson' (fun n ↦ hs $ Infinite.natEmbedding _ n) hr₀ (fun n ↦ hr _)
125-
refine ⟨_, ht.image (Infinite.natEmbedding _).injective.injOn, fun u hut hu ↦
125+
refine ⟨_, ht.image $ (Infinite.natEmbedding _).injective.injOn, fun u hut hu ↦
126126
(h (preimage_subset_of_surjOn (Infinite.natEmbedding _).injective hut) $ hu.preimage
127127
(Embedding.injective _).injOn).trans_le $ measure_mono $ subset_iInter₂ fun i hi ↦ ?_⟩
128128
obtain ⟨n, -, rfl⟩ := hut hi

0 commit comments

Comments
 (0)