@@ -22,7 +22,7 @@ This is in some sense a finitary version of the second Borel-Cantelli lemma.
22
22
## TODO
23
23
24
24
Restate the theorem using the upper density of a set of naturals, once we have it. This will make
25
- `strong_bergelson ` be actually strong.
25
+ `bergelson' ` be actually strong (and please then rename it to `strong_bergelson`) .
26
26
27
27
Use the ergodic theorem to deduce the refinement of the Poincaré recurrence theorem proved by
28
28
Bergelson.
@@ -37,7 +37,7 @@ variable {ι α : Type*} [MeasurableSpace α] {μ : Measure α} [IsFiniteMeasure
37
37
measure at least `r` has an infinite subset whose finite intersections all have positive volume.
38
38
39
39
TODO: The infinity of `t` should be strengthened to `t` having positive natural density. -/
40
- lemma strong_bergelson {s : ℕ → Set α} (hs : ∀ n, MeasurableSet (s n)) (hr₀ : r ≠ 0 )
40
+ lemma bergelson' {s : ℕ → Set α} (hs : ∀ n, MeasurableSet (s n)) (hr₀ : r ≠ 0 )
41
41
(hr : ∀ n, r ≤ μ (s n)) :
42
42
∃ t : Set ℕ, t.Infinite ∧ ∀ ⦃u⦄, u ⊆ t → u.Finite → 0 < μ (⋂ n ∈ u, s n) := by
43
43
-- We let `M f` be the set on which the norm of `f` exceeds its essential supremum, and `N` be the
@@ -118,11 +118,11 @@ lemma strong_bergelson {s : ℕ → Set α} (hs : ∀ n, MeasurableSet (s n)) (h
118
118
119
119
/-- **Bergelson Intersectivity Lemma** : In a finite measure space, a sequence of events that have
120
120
measure at least `r` has an infinite subset whose finite intersections all have positive volume. -/
121
- lemma weak_bergelson [Infinite ι] {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i)) (hr₀ : r ≠ 0 )
121
+ lemma bergelson [Infinite ι] {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i)) (hr₀ : r ≠ 0 )
122
122
(hr : ∀ i, r ≤ μ (s i)) :
123
123
∃ t : Set ι, t.Infinite ∧ ∀ ⦃u⦄, u ⊆ t → u.Finite → 0 < μ (⋂ i ∈ u, s i) := by
124
124
obtain ⟨t, ht, h⟩ := bergelson' (fun n ↦ hs $ Infinite.natEmbedding _ n) hr₀ (fun n ↦ hr _)
125
- refine ⟨_, ht.image (Infinite.natEmbedding _).injective.injOn, fun u hut hu ↦
125
+ refine ⟨_, ht.image $ (Infinite.natEmbedding _).injective.injOn, fun u hut hu ↦
126
126
(h (preimage_subset_of_surjOn (Infinite.natEmbedding _).injective hut) $ hu.preimage
127
127
(Embedding.injective _).injOn).trans_le $ measure_mono $ subset_iInter₂ fun i hi ↦ ?_⟩
128
128
obtain ⟨n, -, rfl⟩ := hut hi
0 commit comments