@@ -43,13 +43,13 @@ variable [∀ i, LieRingModule L (M i)] [∀ i, LieModule R L (M i)]
43
43
instance : LieRingModule L (⨁ i, M i) where
44
44
bracket x m := m.mapRange (fun _ m' => ⁅x, m'⁆) fun _ => lie_zero x
45
45
add_lie x y m := by
46
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
46
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
47
47
simp only [mapRange_apply, add_apply, add_lie]
48
48
lie_add x m n := by
49
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
49
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
50
50
simp only [mapRange_apply, add_apply, lie_add]
51
51
leibniz_lie x y m := by
52
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
52
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
53
53
simp only [mapRange_apply, lie_lie, add_apply, sub_add_cancel]
54
54
55
55
@[simp]
@@ -58,10 +58,10 @@ theorem lie_module_bracket_apply (x : L) (m : ⨁ i, M i) (i : ι) : ⁅x, m⁆
58
58
59
59
instance : LieModule R L (⨁ i, M i) where
60
60
smul_lie t x m := by
61
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext i`
61
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext i`
62
62
simp only [smul_lie, lie_module_bracket_apply, smul_apply]
63
63
lie_smul t x m := by
64
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext i`
64
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext i`
65
65
simp only [lie_smul, lie_module_bracket_apply, smul_apply]
66
66
67
67
variable (R ι L M)
@@ -70,7 +70,7 @@ variable (R ι L M)
70
70
def lieModuleOf [DecidableEq ι] (j : ι) : M j →ₗ⁅R,L⁆ ⨁ i, M i :=
71
71
{ lof R ι M j with
72
72
map_lie' := fun {x m} => by
73
- refine DFinsupp.ext fun i => ?_ -- Porting note: Originally `ext i`
73
+ refine DFinsupp.ext fun i => ?_ -- Porting note (#11041) : Originally `ext i`
74
74
by_cases h : j = i
75
75
· rw [← h]; simp
76
76
· -- This used to be the end of the proof before leanprover/lean4#2644
@@ -98,16 +98,16 @@ instance lieRing : LieRing (⨁ i, L i) :=
98
98
{ (inferInstance : AddCommGroup _) with
99
99
bracket := zipWith (fun _ => fun x y => ⁅x, y⁆) fun _ => lie_zero 0
100
100
add_lie := fun x y z => by
101
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
101
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
102
102
simp only [zipWith_apply, add_apply, add_lie]
103
103
lie_add := fun x y z => by
104
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
104
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
105
105
simp only [zipWith_apply, add_apply, lie_add]
106
106
lie_self := fun x => by
107
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
107
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
108
108
simp only [zipWith_apply, add_apply, lie_self, zero_apply]
109
109
leibniz_lie := fun x y z => by
110
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
110
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
111
111
simp only [sub_apply, zipWith_apply, add_apply, zero_apply]
112
112
apply leibniz_lie }
113
113
@@ -137,7 +137,7 @@ theorem lie_of [DecidableEq ι] {i j : ι} (x : L i) (y : L j) :
137
137
instance lieAlgebra : LieAlgebra R (⨁ i, L i) :=
138
138
{ (inferInstance : Module R _) with
139
139
lie_smul := fun c x y => by
140
- refine DFinsupp.ext fun _ => ?_ -- Porting note: Originally `ext`
140
+ refine DFinsupp.ext fun _ => ?_ -- Porting note (#11041) : Originally `ext`
141
141
simp only [zipWith_apply, smul_apply, bracket_apply, lie_smul] }
142
142
143
143
variable (R ι)
@@ -148,7 +148,7 @@ def lieAlgebraOf [DecidableEq ι] (j : ι) : L j →ₗ⁅R⁆ ⨁ i, L i :=
148
148
{ lof R ι L j with
149
149
toFun := of L j
150
150
map_lie' := fun {x y} => by
151
- refine DFinsupp.ext fun i => ?_ -- Porting note: Originally `ext i`
151
+ refine DFinsupp.ext fun i => ?_ -- Porting note (#11041) : Originally `ext i`
152
152
by_cases h : j = i
153
153
· rw [← h]
154
154
-- This used to be the end of the proof before leanprover/lean4#2644
0 commit comments