-
Notifications
You must be signed in to change notification settings - Fork 396
/
Copy pathCanonicalEmbedding.lean
654 lines (544 loc) · 32.4 KB
/
CanonicalEmbedding.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/-
Copyright (c) 2022 Xavier Roblot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Xavier Roblot
-/
import Mathlib.RingTheory.Discriminant
import Mathlib.Algebra.Module.Zlattice
import Mathlib.MeasureTheory.Group.GeometryOfNumbers
import Mathlib.NumberTheory.NumberField.Embeddings
#align_import number_theory.number_field.canonical_embedding from "leanprover-community/mathlib"@"60da01b41bbe4206f05d34fd70c8dd7498717a30"
/-!
# Canonical embedding of a number field
The canonical embedding of a number field `K` of degree `n` is the ring homomorphism
`K →+* ℂ^n` that sends `x ∈ K` to `(φ_₁(x),...,φ_n(x))` where the `φ_i`'s are the complex
embeddings of `K`. Note that we do not choose an ordering of the embeddings, but instead map `K`
into the type `(K →+* ℂ) → ℂ` of `ℂ`-vectors indexed by the complex embeddings.
## Main definitions and results
* `NumberField.canonicalEmbedding`: the ring homorphism `K →+* ((K →+* ℂ) → ℂ)` defined by
sending `x : K` to the vector `(φ x)` indexed by `φ : K →+* ℂ`.
* `NumberField.canonicalEmbedding.integerLattice.inter_ball_finite`: the intersection of the
image of the ring of integers by the canonical embedding and any ball centered at `0` of finite
radius is finite.
* `NumberField.mixedEmbedding`: the ring homomorphism from `K →+* ({ w // IsReal w } → ℝ) ×
({ w // IsComplex w } → ℂ)` that sends `x ∈ K` to `(φ_w x)_w` where `φ_w` is the embedding
associated to the infinite place `w`. In particular, if `w` is real then `φ_w : K →+* ℝ` and, if
`w` is complex, `φ_w` is an arbitrary choice between the two complex embeddings defining the place
`w`.
* `NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt`: let
`f : InfinitePlace K → ℝ≥0`, if the product `∏ w, f w` is large enough, then there exists a
nonzero algebraic integer `a` in `K` such that `w a < f w` for all infinite places `w`.
## Tags
number field, infinite places
-/
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
variable (K : Type*) [Field K]
namespace NumberField.canonicalEmbedding
open NumberField
/-- The canonical embedding of a number field `K` of degree `n` into `ℂ^n`. -/
def _root_.NumberField.canonicalEmbedding : K →+* ((K →+* ℂ) → ℂ) := Pi.ringHom fun φ => φ
theorem _root_.NumberField.canonicalEmbedding_injective [NumberField K] :
Function.Injective (NumberField.canonicalEmbedding K) := RingHom.injective _
variable {K}
@[simp]
theorem apply_at (φ : K →+* ℂ) (x : K) : (NumberField.canonicalEmbedding K x) φ = φ x := rfl
open scoped ComplexConjugate
/-- The image of `canonicalEmbedding` lives in the `ℝ`-submodule of the `x ∈ ((K →+* ℂ) → ℂ)` such
that `conj x_φ = x_(conj φ)` for all `∀ φ : K →+* ℂ`. -/
theorem conj_apply {x : ((K →+* ℂ) → ℂ)} (φ : K →+* ℂ)
(hx : x ∈ Submodule.span ℝ (Set.range (canonicalEmbedding K))) :
conj (x φ) = x (ComplexEmbedding.conjugate φ) := by
refine Submodule.span_induction hx ?_ ?_ (fun _ _ hx hy => ?_) (fun a _ hx => ?_)
· rintro _ ⟨x, rfl⟩
rw [apply_at, apply_at, ComplexEmbedding.conjugate_coe_eq]
· rw [Pi.zero_apply, Pi.zero_apply, map_zero]
· rw [Pi.add_apply, Pi.add_apply, map_add, hx, hy]
· rw [Pi.smul_apply, Complex.real_smul, map_mul, Complex.conj_ofReal]
exact congrArg ((a : ℂ) * ·) hx
theorem nnnorm_eq [NumberField K] (x : K) :
‖canonicalEmbedding K x‖₊ = Finset.univ.sup (fun φ : K →+* ℂ => ‖φ x‖₊) := by
simp_rw [Pi.nnnorm_def, apply_at]
theorem norm_le_iff [NumberField K] (x : K) (r : ℝ) :
‖canonicalEmbedding K x‖ ≤ r ↔ ∀ φ : K →+* ℂ, ‖φ x‖ ≤ r := by
obtain hr | hr := lt_or_le r 0
· obtain ⟨φ⟩ := (inferInstance : Nonempty (K →+* ℂ))
refine iff_of_false ?_ ?_
exact (hr.trans_le (norm_nonneg _)).not_le
exact fun h => hr.not_le (le_trans (norm_nonneg _) (h φ))
· lift r to NNReal using hr
simp_rw [← coe_nnnorm, nnnorm_eq, NNReal.coe_le_coe, Finset.sup_le_iff, Finset.mem_univ,
forall_true_left]
variable (K)
/-- The image of `𝓞 K` as a subring of `ℂ^n`. -/
def integerLattice : Subring ((K →+* ℂ) → ℂ) :=
(RingHom.range (algebraMap (𝓞 K) K)).map (canonicalEmbedding K)
theorem integerLattice.inter_ball_finite [NumberField K] (r : ℝ) :
((integerLattice K : Set ((K →+* ℂ) → ℂ)) ∩ Metric.closedBall 0 r).Finite := by
obtain hr | _ := lt_or_le r 0
· simp [Metric.closedBall_eq_empty.2 hr]
· have heq : ∀ x, canonicalEmbedding K x ∈ Metric.closedBall 0 r ↔
∀ φ : K →+* ℂ, ‖φ x‖ ≤ r := by
intro x; rw [← norm_le_iff, mem_closedBall_zero_iff]
convert (Embeddings.finite_of_norm_le K ℂ r).image (canonicalEmbedding K)
ext; constructor
· rintro ⟨⟨_, ⟨x, rfl⟩, rfl⟩, hx⟩
exact ⟨↑x, ⟨SetLike.coe_mem x, fun φ => (heq x).mp hx φ⟩, rfl⟩
· rintro ⟨x, ⟨hx1, hx2⟩, rfl⟩
exact ⟨⟨x, ⟨⟨x, hx1⟩, rfl⟩, rfl⟩, (heq x).mpr hx2⟩
open Module Fintype FiniteDimensional
/-- A `ℂ`-basis of `ℂ^n` that is also a `ℤ`-basis of the `integerLattice`. -/
noncomputable def latticeBasis [NumberField K] :
Basis (Free.ChooseBasisIndex ℤ (𝓞 K)) ℂ ((K →+* ℂ) → ℂ) := by
classical
-- Let `B` be the canonical basis of `(K →+* ℂ) → ℂ`. We prove that the determinant of
-- the image by `canonicalEmbedding` of the integral basis of `K` is nonzero. This
-- will imply the result.
let B := Pi.basisFun ℂ (K →+* ℂ)
let e : (K →+* ℂ) ≃ Free.ChooseBasisIndex ℤ (𝓞 K) :=
equivOfCardEq ((Embeddings.card K ℂ).trans (finrank_eq_card_basis (integralBasis K)))
let M := B.toMatrix (fun i => canonicalEmbedding K (integralBasis K (e i)))
suffices M.det ≠ 0 by
rw [← isUnit_iff_ne_zero, ← Basis.det_apply, ← is_basis_iff_det] at this
refine basisOfLinearIndependentOfCardEqFinrank
((linearIndependent_equiv e.symm).mpr this.1) ?_
rw [← finrank_eq_card_chooseBasisIndex, RingOfIntegers.rank, finrank_fintype_fun_eq_card,
Embeddings.card]
-- In order to prove that the determinant is nonzero, we show that it is equal to the
-- square of the discriminant of the integral basis and thus it is not zero
let N := Algebra.embeddingsMatrixReindex ℚ ℂ (fun i => integralBasis K (e i))
RingHom.equivRatAlgHom
rw [show M = N.transpose by { ext:2; rfl }]
rw [Matrix.det_transpose, ← @pow_ne_zero_iff ℂ _ _ _ 2 (by norm_num)]
convert (map_ne_zero_iff _ (algebraMap ℚ ℂ).injective).mpr
(Algebra.discr_not_zero_of_basis ℚ (integralBasis K))
rw [← Algebra.discr_reindex ℚ (integralBasis K) e.symm]
exact (Algebra.discr_eq_det_embeddingsMatrixReindex_pow_two ℚ ℂ
(fun i => integralBasis K (e i)) RingHom.equivRatAlgHom).symm
@[simp]
theorem latticeBasis_apply [NumberField K] (i : Free.ChooseBasisIndex ℤ (𝓞 K)) :
latticeBasis K i = (canonicalEmbedding K) (integralBasis K i) := by
simp only [latticeBasis, integralBasis_apply, coe_basisOfLinearIndependentOfCardEqFinrank,
Function.comp_apply, Equiv.apply_symm_apply]
theorem mem_span_latticeBasis [NumberField K] (x : (K →+* ℂ) → ℂ) :
x ∈ Submodule.span ℤ (Set.range (latticeBasis K)) ↔ x ∈ canonicalEmbedding K '' (𝓞 K) := by
rw [show Set.range (latticeBasis K) =
(canonicalEmbedding K).toIntAlgHom.toLinearMap '' (Set.range (integralBasis K)) by
rw [← Set.range_comp]; exact congrArg Set.range (funext (fun i => latticeBasis_apply K i))]
rw [← Submodule.map_span, ← SetLike.mem_coe, Submodule.map_coe]
rw [show (Submodule.span ℤ (Set.range (integralBasis K)) : Set K) = 𝓞 K by
ext; exact mem_span_integralBasis K]
rfl
end NumberField.canonicalEmbedding
namespace NumberField.mixedEmbedding
open NumberField NumberField.InfinitePlace FiniteDimensional
/-- The space `ℝ^r₁ × ℂ^r₂` with `(r₁, r₂)` the signature of `K`. -/
local notation "E" K =>
({w : InfinitePlace K // IsReal w} → ℝ) × ({w : InfinitePlace K // IsComplex w} → ℂ)
/-- The mixed embedding of a number field `K` of signature `(r₁, r₂)` into `ℝ^r₁ × ℂ^r₂`. -/
noncomputable def _root_.NumberField.mixedEmbedding : K →+* (E K) :=
RingHom.prod (Pi.ringHom fun w => embedding_of_isReal w.prop)
(Pi.ringHom fun w => w.val.embedding)
instance [NumberField K] : Nontrivial (E K) := by
obtain ⟨w⟩ := (inferInstance : Nonempty (InfinitePlace K))
obtain hw | hw := w.isReal_or_isComplex
· have : Nonempty {w : InfinitePlace K // IsReal w} := ⟨⟨w, hw⟩⟩
exact nontrivial_prod_left
· have : Nonempty {w : InfinitePlace K // IsComplex w} := ⟨⟨w, hw⟩⟩
exact nontrivial_prod_right
protected theorem finrank [NumberField K] : finrank ℝ (E K) = finrank ℚ K := by
classical
rw [finrank_prod, finrank_pi, finrank_pi_fintype, Complex.finrank_real_complex, Finset.sum_const,
Finset.card_univ, ← NrRealPlaces, ← NrComplexPlaces, ← card_real_embeddings,
Algebra.id.smul_eq_mul, mul_comm, ← card_complex_embeddings, ← NumberField.Embeddings.card K ℂ,
Fintype.card_subtype_compl, Nat.add_sub_of_le (Fintype.card_subtype_le _)]
theorem _root_.NumberField.mixedEmbedding_injective [NumberField K] :
Function.Injective (NumberField.mixedEmbedding K) := by
exact RingHom.injective _
section commMap
/-- The linear map that makes `canonicalEmbedding` and `mixedEmbedding` commute, see
`commMap_canonical_eq_mixed`. -/
noncomputable def commMap : ((K →+* ℂ) → ℂ) →ₗ[ℝ] (E K) :=
{ toFun := fun x => ⟨fun w => (x w.val.embedding).re, fun w => x w.val.embedding⟩
map_add' := by
simp only [Pi.add_apply, Complex.add_re, Prod.mk_add_mk, Prod.mk.injEq]
exact fun _ _ => ⟨rfl, rfl⟩
map_smul' := by
simp only [Pi.smul_apply, Complex.real_smul, Complex.mul_re, Complex.ofReal_re,
Complex.ofReal_im, zero_mul, sub_zero, RingHom.id_apply, Prod.smul_mk, Prod.mk.injEq]
exact fun _ _ => ⟨rfl, rfl⟩ }
theorem commMap_apply_of_isReal (x : (K →+* ℂ) → ℂ) {w : InfinitePlace K} (hw : IsReal w) :
(commMap K x).1 ⟨w, hw⟩ = (x w.embedding).re := rfl
theorem commMap_apply_of_isComplex (x : (K →+* ℂ) → ℂ) {w : InfinitePlace K} (hw : IsComplex w) :
(commMap K x).2 ⟨w, hw⟩ = x w.embedding := rfl
@[simp]
theorem commMap_canonical_eq_mixed (x : K) :
commMap K (canonicalEmbedding K x) = mixedEmbedding K x := by
simp only [canonicalEmbedding, commMap, LinearMap.coe_mk, AddHom.coe_mk, Pi.ringHom_apply,
mixedEmbedding, RingHom.prod_apply, Prod.mk.injEq]
exact ⟨rfl, rfl⟩
/-- This is a technical result to ensure that the image of the `ℂ`-basis of `ℂ^n` defined in
`canonicalEmbedding.latticeBasis` is a `ℝ`-basis of `ℝ^r₁ × ℂ^r₂`,
see `mixedEmbedding.latticeBasis`. -/
theorem disjoint_span_commMap_ker [NumberField K] :
Disjoint (Submodule.span ℝ (Set.range (canonicalEmbedding.latticeBasis K)))
(LinearMap.ker (commMap K)) := by
refine LinearMap.disjoint_ker.mpr (fun x h_mem h_zero => ?_)
replace h_mem : x ∈ Submodule.span ℝ (Set.range (canonicalEmbedding K)) := by
refine (Submodule.span_mono ?_) h_mem
rintro _ ⟨i, rfl⟩
exact ⟨integralBasis K i, (canonicalEmbedding.latticeBasis_apply K i).symm⟩
ext1 φ
rw [Pi.zero_apply]
by_cases hφ : ComplexEmbedding.IsReal φ
· rw [show x φ = (x φ).re by
rw [eq_comm, ← Complex.conj_eq_iff_re, canonicalEmbedding.conj_apply _ h_mem,
ComplexEmbedding.isReal_iff.mp hφ], ← Complex.ofReal_zero]
congr
rw [← embedding_mk_eq_of_isReal hφ, ← commMap_apply_of_isReal K x ⟨φ, hφ, rfl⟩]
exact congrFun (congrArg (fun x => x.1) h_zero) ⟨InfinitePlace.mk φ, _⟩
· have := congrFun (congrArg (fun x => x.2) h_zero) ⟨InfinitePlace.mk φ, ⟨φ, hφ, rfl⟩⟩
cases embedding_mk_eq φ with
| inl h => rwa [← h, ← commMap_apply_of_isComplex K x ⟨φ, hφ, rfl⟩]
| inr h =>
apply RingHom.injective (starRingEnd ℂ)
rwa [canonicalEmbedding.conj_apply _ h_mem, ← h, map_zero,
← commMap_apply_of_isComplex K x ⟨φ, hφ, rfl⟩]
end commMap
noncomputable section stdBasis
open Classical Complex MeasureTheory MeasureTheory.Measure Zspan Matrix BigOperators
ComplexConjugate
variable [NumberField K]
/-- The type indexing the basis `stdBasis`. -/
abbrev index := {w : InfinitePlace K // IsReal w} ⊕ ({w : InfinitePlace K // IsComplex w}) × (Fin 2)
/-- The `ℝ`-basis of `({w // IsReal w} → ℝ) × ({ w // IsComplex w } → ℂ)` formed by the vector
equal to `1` at `w` and `0` elsewhere for `IsReal w` and by the couple of vectors equal to `1`
(resp. `I`) at `w` and `0` elsewhere for `IsComplex w`. -/
def stdBasis : Basis (index K) ℝ (E K) :=
Basis.prod (Pi.basisFun ℝ _)
(Basis.reindex (Pi.basis fun _ => basisOneI) (Equiv.sigmaEquivProd _ _))
variable {K}
@[simp]
theorem stdBasis_apply_ofIsReal (x : E K) (w : {w : InfinitePlace K // IsReal w}) :
(stdBasis K).repr x (Sum.inl w) = x.1 w := rfl
@[simp]
theorem stdBasis_apply_ofIsComplex_fst (x : E K) (w : {w : InfinitePlace K // IsComplex w}) :
(stdBasis K).repr x (Sum.inr ⟨w, 0⟩) = (x.2 w).re := rfl
@[simp]
theorem stdBasis_apply_ofIsComplex_snd (x : E K) (w : {w : InfinitePlace K // IsComplex w}) :
(stdBasis K).repr x (Sum.inr ⟨w, 1⟩) = (x.2 w).im := rfl
variable (K)
theorem fundamentalDomain_stdBasis :
fundamentalDomain (stdBasis K) =
(Set.univ.pi fun _ => Set.Ico 0 1) ×ˢ
(Set.univ.pi fun _ => Complex.measurableEquivPi⁻¹' (Set.univ.pi fun _ => Set.Ico 0 1)) := by
ext
simp [stdBasis, mem_fundamentalDomain, Complex.measurableEquivPi]
theorem volume_fundamentalDomain_stdBasis :
volume (fundamentalDomain (stdBasis K)) = 1 := by
rw [fundamentalDomain_stdBasis, volume_eq_prod, prod_prod, volume_pi, volume_pi, pi_pi, pi_pi,
Complex.volume_preserving_equiv_pi.measure_preimage ?_, volume_pi, pi_pi, Real.volume_Ico,
sub_zero, ENNReal.ofReal_one, Finset.prod_const_one, Finset.prod_const_one,
Finset.prod_const_one, one_mul]
exact MeasurableSet.pi Set.countable_univ (fun _ _ => measurableSet_Ico)
/-- The `Equiv` between `index K` and `K →+* ℂ` defined by sending a real infinite place `w` to
the unique corresponding embedding `w.embedding`, and the pair `⟨w, 0⟩` (resp. `⟨w, 1⟩`) for a
complex infinite place `w` to `w.embedding` (resp. `conjugate w.embedding`). -/
def indexEquiv : (index K) ≃ (K →+* ℂ) := by
refine Equiv.ofBijective (fun c => ?_)
((Fintype.bijective_iff_surjective_and_card _).mpr ⟨?_, ?_⟩)
· cases c with
| inl w => exact w.val.embedding
| inr wj => rcases wj with ⟨w, j⟩
exact if j = 0 then w.val.embedding else ComplexEmbedding.conjugate w.val.embedding
· intro φ
by_cases hφ : ComplexEmbedding.IsReal φ
· exact ⟨Sum.inl (InfinitePlace.mkReal ⟨φ, hφ⟩), by simp [embedding_mk_eq_of_isReal hφ]⟩
· by_cases hw : (InfinitePlace.mk φ).embedding = φ
· exact ⟨Sum.inr ⟨InfinitePlace.mkComplex ⟨φ, hφ⟩, 0⟩, by simp [hw]⟩
· exact ⟨Sum.inr ⟨InfinitePlace.mkComplex ⟨φ, hφ⟩, 1⟩,
by simp [(embedding_mk_eq φ).resolve_left hw]⟩
· rw [Embeddings.card, ← mixedEmbedding.finrank K,
← FiniteDimensional.finrank_eq_card_basis (stdBasis K)]
variable {K}
@[simp]
theorem indexEquiv_apply_ofIsReal (w : {w : InfinitePlace K // IsReal w}) :
(indexEquiv K) (Sum.inl w) = w.val.embedding := rfl
@[simp]
theorem indexEquiv_apply_ofIsComplex_fst (w : {w : InfinitePlace K // IsComplex w}) :
(indexEquiv K) (Sum.inr ⟨w, 0⟩) = w.val.embedding := rfl
@[simp]
theorem indexEquiv_apply_ofIsComplex_snd (w : {w : InfinitePlace K // IsComplex w}) :
(indexEquiv K) (Sum.inr ⟨w, 1⟩) = ComplexEmbedding.conjugate w.val.embedding := rfl
variable (K)
/-- The matrix that gives the representation on `stdBasis` of the image by `commMap` of an
element `x` of `(K →+* ℂ) → ℂ` fixed by the map `x_φ ↦ conj x_(conjugate φ)`,
see `stdBasis_repr_eq_matrixToStdBasis_mul`. -/
def matrixToStdBasis : Matrix (index K) (index K) ℂ :=
fromBlocks (diagonal fun _ => 1) 0 0 <| reindex (Equiv.prodComm _ _) (Equiv.prodComm _ _)
(blockDiagonal (fun _ => (2 : ℂ)⁻¹ • !![1, 1; - I, I]))
theorem det_matrixToStdBasis :
(matrixToStdBasis K).det = (2⁻¹ * I) ^ NrComplexPlaces K :=
calc
_ = ∏ k : { w : InfinitePlace K // IsComplex w }, det ((2 : ℂ)⁻¹ • !![1, 1; -I, I]) := by
rw [matrixToStdBasis, det_fromBlocks_zero₂₁, det_diagonal, Finset.prod_const_one, one_mul,
det_reindex_self, det_blockDiagonal]
_ = ∏ k : { w : InfinitePlace K // IsComplex w }, (2⁻¹ * Complex.I) := by
refine Finset.prod_congr (Eq.refl _) (fun _ _ => ?_)
field_simp; ring
_ = (2⁻¹ * Complex.I) ^ Fintype.card {w : InfinitePlace K // IsComplex w} := by
rw [Finset.prod_const, Fintype.card]
/-- Let `x : (K →+* ℂ) → ℂ` such that `x_φ = conj x_(conj φ)` for all `φ : K →+* ℂ`, then the
representation of `commMap K x` on `stdBasis` is given (up to reindexing) by the product of
`matrixToStdBasis` by `x`. -/
theorem stdBasis_repr_eq_matrixToStdBasis_mul (x : (K →+* ℂ) → ℂ)
(hx : ∀ φ, conj (x φ) = x (ComplexEmbedding.conjugate φ)) (c : index K) :
((stdBasis K).repr (commMap K x) c : ℂ) =
(mulVec (matrixToStdBasis K) (x ∘ (indexEquiv K))) c := by
simp_rw [commMap, matrixToStdBasis, LinearMap.coe_mk, AddHom.coe_mk,
mulVec, dotProduct, Function.comp_apply, index, Fintype.sum_sum_type,
diagonal_one, reindex_apply, ← Finset.univ_product_univ, Finset.sum_product,
indexEquiv_apply_ofIsReal, Fin.sum_univ_two, indexEquiv_apply_ofIsComplex_fst,
indexEquiv_apply_ofIsComplex_snd, smul_of, smul_cons, smul_eq_mul,
mul_one, smul_empty, Equiv.prodComm_symm, Equiv.coe_prodComm]
cases c with
| inl w =>
simp_rw [stdBasis_apply_ofIsReal, fromBlocks_apply₁₁, fromBlocks_apply₁₂,
one_apply, Matrix.zero_apply, ite_mul, one_mul, zero_mul, Finset.sum_ite_eq,
Finset.mem_univ, ite_true, add_zero, Finset.sum_const_zero, add_zero,
← conj_eq_iff_re, hx (embedding w.val), conjugate_embedding_eq_of_isReal w.prop]
| inr c =>
rcases c with ⟨w, j⟩
fin_cases j
· simp_rw [Fin.mk_zero, stdBasis_apply_ofIsComplex_fst, fromBlocks_apply₂₁,
fromBlocks_apply₂₂, Matrix.zero_apply, submatrix_apply,
blockDiagonal_apply, Prod.swap_prod_mk, ite_mul, zero_mul, Finset.sum_const_zero,
zero_add, Finset.sum_add_distrib, Finset.sum_ite_eq, Finset.mem_univ, ite_true,
of_apply, cons_val', cons_val_zero, cons_val_one,
head_cons, ← hx (embedding w), re_eq_add_conj]
field_simp
· simp_rw [Fin.mk_one, stdBasis_apply_ofIsComplex_snd, fromBlocks_apply₂₁,
fromBlocks_apply₂₂, Matrix.zero_apply, submatrix_apply,
blockDiagonal_apply, Prod.swap_prod_mk, ite_mul, zero_mul, Finset.sum_const_zero,
zero_add, Finset.sum_add_distrib, Finset.sum_ite_eq, Finset.mem_univ, ite_true,
of_apply, cons_val', cons_val_zero, cons_val_one,
head_cons, ← hx (embedding w), im_eq_sub_conj]
ring_nf; field_simp
end stdBasis
section integerLattice
open Module FiniteDimensional
/-- A `ℝ`-basis of `ℝ^r₁ × ℂ^r₂` that is also a `ℤ`-basis of the image of `𝓞 K`. -/
noncomputable def latticeBasis [NumberField K] :
Basis (Free.ChooseBasisIndex ℤ (𝓞 K)) ℝ (E K) := by
classical
-- We construct an `ℝ`-linear independent family from the image of
-- `canonicalEmbedding.lattice_basis` by `comm_map`
have := LinearIndependent.map (LinearIndependent.restrict_scalars
(by { simpa only [Complex.real_smul, mul_one] using Complex.ofReal_injective })
(canonicalEmbedding.latticeBasis K).linearIndependent)
(disjoint_span_commMap_ker K)
-- and it's a basis since it has the right cardinality
refine basisOfLinearIndependentOfCardEqFinrank this ?_
rw [← finrank_eq_card_chooseBasisIndex, RingOfIntegers.rank, finrank_prod, finrank_pi,
finrank_pi_fintype, Complex.finrank_real_complex, Finset.sum_const, Finset.card_univ,
← NrRealPlaces, ← NrComplexPlaces, ← card_real_embeddings, Algebra.id.smul_eq_mul, mul_comm,
← card_complex_embeddings, ← NumberField.Embeddings.card K ℂ, Fintype.card_subtype_compl,
Nat.add_sub_of_le (Fintype.card_subtype_le _)]
@[simp]
theorem latticeBasis_apply [NumberField K] (i : Free.ChooseBasisIndex ℤ (𝓞 K)) :
latticeBasis K i = (mixedEmbedding K) (integralBasis K i) := by
simp only [latticeBasis, coe_basisOfLinearIndependentOfCardEqFinrank, Function.comp_apply,
canonicalEmbedding.latticeBasis_apply, integralBasis_apply, commMap_canonical_eq_mixed]
theorem mem_span_latticeBasis [NumberField K] (x : (E K)) :
x ∈ Submodule.span ℤ (Set.range (latticeBasis K)) ↔ x ∈ mixedEmbedding K '' (𝓞 K) := by
rw [show Set.range (latticeBasis K) =
(mixedEmbedding K).toIntAlgHom.toLinearMap '' (Set.range (integralBasis K)) by
rw [← Set.range_comp]; exact congrArg Set.range (funext (fun i => latticeBasis_apply K i))]
rw [← Submodule.map_span, ← SetLike.mem_coe, Submodule.map_coe]
rw [show (Submodule.span ℤ (Set.range (integralBasis K)) : Set K) = 𝓞 K by
ext; exact mem_span_integralBasis K]
rfl
end integerLattice
section convexBodyLt
open Metric ENNReal NNReal
variable (f : InfinitePlace K → ℝ≥0)
/-- The convex body defined by `f`: the set of points `x : E` such that `‖x w‖ < f w` for all
infinite places `w`. -/
abbrev convexBodyLt : Set (E K) :=
(Set.univ.pi (fun w : { w : InfinitePlace K // IsReal w } => ball 0 (f w))) ×ˢ
(Set.univ.pi (fun w : { w : InfinitePlace K // IsComplex w } => ball 0 (f w)))
theorem convexBodyLt_mem {x : K} :
mixedEmbedding K x ∈ (convexBodyLt K f) ↔ ∀ w : InfinitePlace K, w x < f w := by
simp_rw [mixedEmbedding, RingHom.prod_apply, Set.mem_prod, Set.mem_pi, Set.mem_univ,
forall_true_left, mem_ball_zero_iff, Pi.ringHom_apply, ← Complex.norm_real,
embedding_of_isReal_apply, Subtype.forall, ← ball_or_left, ← not_isReal_iff_isComplex, em,
forall_true_left, norm_embedding_eq]
theorem convexBodyLt_symmetric (x : E K) (hx : x ∈ (convexBodyLt K f)) :
-x ∈ (convexBodyLt K f) := by
simp only [Set.mem_prod, Prod.fst_neg, Set.mem_pi, Set.mem_univ, Pi.neg_apply,
mem_ball_zero_iff, norm_neg, Real.norm_eq_abs, forall_true_left, Subtype.forall,
Prod.snd_neg, Complex.norm_eq_abs, hx] at hx ⊢
exact hx
theorem convexBodyLt_convex : Convex ℝ (convexBodyLt K f) :=
Convex.prod (convex_pi (fun _ _ => convex_ball _ _)) (convex_pi (fun _ _ => convex_ball _ _))
open Classical Fintype MeasureTheory MeasureTheory.Measure BigOperators
variable [NumberField K]
instance : IsAddHaarMeasure (volume : Measure (E K)) := prod.instIsAddHaarMeasure volume volume
/-- The fudge factor that appears in the formula for the volume of `convexBodyLt`. -/
noncomputable abbrev convexBodyLtFactor : ℝ≥0∞ :=
(2 : ℝ≥0∞) ^ NrRealPlaces K * (NNReal.pi : ℝ≥0∞) ^ NrComplexPlaces K
theorem convexBodyLtFactor_pos : 0 < (convexBodyLtFactor K) := by
refine mul_pos (NeZero.ne _) (ENNReal.pow_ne_zero ?_ _)
exact ne_of_gt (coe_pos.mpr Real.pi_pos)
theorem convexBodyLtFactor_lt_top : (convexBodyLtFactor K) < ⊤ := by
refine mul_lt_top ?_ ?_
· exact ne_of_lt (pow_lt_top (lt_top_iff_ne_top.mpr two_ne_top) _)
· exact ne_of_lt (pow_lt_top coe_lt_top _)
/-- The volume of `(ConvexBodyLt K f)` where `convexBodyLt K f` is the set of points `x`
such that `‖x w‖ < f w` for all infinite places `w`. -/
theorem convexBodyLt_volume :
volume (convexBodyLt K f) = (convexBodyLtFactor K) * ∏ w, (f w) ^ (mult w) := by
calc
_ = (∏ x : {w // InfinitePlace.IsReal w}, ENNReal.ofReal (2 * (f x.val))) *
∏ x : {w // InfinitePlace.IsComplex w}, pi * ENNReal.ofReal (f x.val) ^ 2 := by
simp_rw [volume_eq_prod, prod_prod, volume_pi, pi_pi, Real.volume_ball, Complex.volume_ball]
_ = (↑2 ^ NrRealPlaces K * (∏ x : {w // InfinitePlace.IsReal w}, ENNReal.ofReal (f x.val))) *
(↑pi ^ NrComplexPlaces K * (∏ x : {w // IsComplex w}, ENNReal.ofReal (f x.val) ^ 2)) := by
simp_rw [ofReal_mul (by norm_num : 0 ≤ (2 : ℝ)), Finset.prod_mul_distrib, Finset.prod_const,
Finset.card_univ, ofReal_ofNat]
_ = (convexBodyLtFactor K) * ((∏ x : {w // InfinitePlace.IsReal w}, ENNReal.ofReal (f x.val)) *
(∏ x : {w // IsComplex w}, ENNReal.ofReal (f x.val) ^ 2)) := by ring
_ = (convexBodyLtFactor K) * ∏ w, (f w) ^ (mult w) := by
simp_rw [mult, pow_ite, pow_one, Finset.prod_ite, ofReal_coe_nnreal, not_isReal_iff_isComplex,
coe_mul, coe_finset_prod, ENNReal.coe_pow]
congr 2
· refine (Finset.prod_subtype (Finset.univ.filter _) ?_ (fun w => (f w : ℝ≥0∞))).symm
exact fun _ => by simp only [Finset.mem_univ, forall_true_left, Finset.mem_filter, true_and]
· refine (Finset.prod_subtype (Finset.univ.filter _) ?_ (fun w => (f w : ℝ≥0∞) ^ 2)).symm
exact fun _ => by simp only [Finset.mem_univ, forall_true_left, Finset.mem_filter, true_and]
variable {f}
/-- This is a technical result: quite often, we want to impose conditions at all infinite places
but one and choose the value at the remaining place so that we can apply
`exists_ne_zero_mem_ringOfIntegers_lt`. -/
theorem adjust_f {w₁ : InfinitePlace K} (B : ℝ≥0) (hf : ∀ w, w ≠ w₁→ f w ≠ 0) :
∃ g : InfinitePlace K → ℝ≥0, (∀ w, w ≠ w₁ → g w = f w) ∧ ∏ w, (g w) ^ mult w = B := by
let S := ∏ w in Finset.univ.erase w₁, (f w) ^ mult w
refine ⟨Function.update f w₁ ((B * S⁻¹) ^ (mult w₁ : ℝ)⁻¹), ?_, ?_⟩
· exact fun w hw => Function.update_noteq hw _ f
· rw [← Finset.mul_prod_erase Finset.univ _ (Finset.mem_univ w₁), Function.update_same,
Finset.prod_congr rfl fun w hw => by rw [Function.update_noteq (Finset.ne_of_mem_erase hw)],
← NNReal.rpow_nat_cast, ← NNReal.rpow_mul, inv_mul_cancel, NNReal.rpow_one, mul_assoc,
inv_mul_cancel, mul_one]
· rw [Finset.prod_ne_zero_iff]
exact fun w hw => pow_ne_zero _ (hf w (Finset.ne_of_mem_erase hw))
· rw [mult]; split_ifs <;> norm_num
end convexBodyLt
section convexBodySum
open ENNReal BigOperators Classical MeasureTheory Fintype
variable [NumberField K] (B : ℝ)
/-- The convex body equal to the set of points `x : E` such that
`∑ w real, ‖x w‖ + 2 * ∑ w complex, ‖x w‖ ≤ B`. -/
abbrev convexBodySum : Set (E K) := { x | ∑ w, ‖x.1 w‖ + 2 * ∑ w, ‖x.2 w‖ ≤ B }
theorem convexBodySum_empty {B} (h : B < 0) : convexBodySum K B = ∅ := by
ext x
refine ⟨fun hx => ?_, fun h => h.elim⟩
· rw [Set.mem_setOf] at hx
have : 0 ≤ ∑ w, ‖x.1 w‖ + 2 * ∑ w, ‖x.2 w‖ := by
refine add_nonneg ?_ ?_
· exact Finset.sum_nonneg (fun _ _ => norm_nonneg _)
· exact mul_nonneg zero_le_two (Finset.sum_nonneg (fun _ _ => norm_nonneg _))
linarith
theorem convexBodySum_mem {x : K} :
mixedEmbedding K x ∈ (convexBodySum K B) ↔
∑ w : InfinitePlace K, (mult w) * w.val x ≤ B := by
simp_rw [Set.mem_setOf_eq, mixedEmbedding, RingHom.prod_apply, Pi.ringHom_apply,
← Complex.norm_real, embedding_of_isReal_apply, norm_embedding_eq, mult, Nat.cast_ite, ite_mul,
Finset.sum_ite, Finset.filter_congr (fun _ _ => not_isReal_iff_isComplex), Finset.mul_sum,
← Finset.sum_subtype_eq_sum_filter, Finset.subtype_univ, Nat.cast_one, one_mul, Nat.cast_ofNat]
rfl
theorem convexBodySum_symmetric (x : E K) (hx : x ∈ (convexBodySum K B)) :
-x ∈ (convexBodySum K B) := by
simp_rw [Set.mem_setOf_eq, Prod.fst_neg, Prod.snd_neg, Pi.neg_apply, norm_neg]
exact hx
theorem convexBodySum_convex : Convex ℝ (convexBodySum K B) := by
refine Convex_subadditive_le ?_ ?_ B
· intro x y
simp_rw [Prod.fst_add, Pi.add_apply, Prod.snd_add]
refine le_trans (add_le_add
(Finset.sum_le_sum (fun w _ => norm_add_le (x.1 w) (y.1 w)))
(mul_le_mul_of_nonneg_left
(Finset.sum_le_sum (fun w _ => norm_add_le (x.2 w) (y.2 w))) (by norm_num))) ?_
simp_rw [Finset.sum_add_distrib, mul_add]
exact le_of_eq (by ring)
· intro _ _ h
simp_rw [Prod.smul_fst, Prod.smul_snd, Pi.smul_apply, smul_eq_mul, Complex.real_smul, norm_mul,
Complex.norm_real, Real.norm_of_nonneg h, ← Finset.mul_sum]
exact le_of_eq (by ring)
end convexBodySum
section minkowski
open MeasureTheory MeasureTheory.Measure Classical FiniteDimensional Zspan Real
open scoped ENNReal NNReal
variable [NumberField K]
/-- The bound that appears in Minkowski Convex Body theorem, see
`MeasureTheory.exists_ne_zero_mem_lattice_of_measure_mul_two_pow_lt_measure`. See
`NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis` for the computation of
`volume (fundamentalDomain (latticeBasis K))`. -/
noncomputable def minkowskiBound : ℝ≥0∞ :=
volume (fundamentalDomain (latticeBasis K)) * (2:ℝ≥0∞) ^ (finrank ℝ (E K))
theorem minkowskiBound_lt_top : minkowskiBound K < ⊤ := by
refine ENNReal.mul_lt_top ?_ ?_
· exact ne_of_lt (fundamentalDomain_isBounded (latticeBasis K)).measure_lt_top
· exact ne_of_lt (ENNReal.pow_lt_top (lt_top_iff_ne_top.mpr ENNReal.two_ne_top) _)
variable {f : InfinitePlace K → ℝ≥0}
instance : IsAddHaarMeasure (volume : Measure (E K)) := prod.instIsAddHaarMeasure volume volume
/-- Assume that `f : InfinitePlace K → ℝ≥0` is such that
`minkowskiBound K < volume (convexBodyLt K f)` where `convexBodyLt K f` is the set of
points `x` such that `‖x w‖ < f w` for all infinite places `w` (see `convexBodyLt_volume` for
the computation of this volume), then there exists a nonzero algebraic integer `a` in `𝓞 K` such
that `w a < f w` for all infinite places `w`. -/
theorem exists_ne_zero_mem_ringOfIntegers_lt (h : minkowskiBound K < volume (convexBodyLt K f)) :
∃ (a : 𝓞 K), a ≠ 0 ∧ ∀ w : InfinitePlace K, w a < f w := by
have h_fund := Zspan.isAddFundamentalDomain (latticeBasis K) volume
have : Countable (Submodule.span ℤ (Set.range (latticeBasis K))).toAddSubgroup := by
change Countable (Submodule.span ℤ (Set.range (latticeBasis K)): Set (E K))
infer_instance
obtain ⟨⟨x, hx⟩, h_nzr, h_mem⟩ := exists_ne_zero_mem_lattice_of_measure_mul_two_pow_lt_measure
h_fund h (convexBodyLt_symmetric K f) (convexBodyLt_convex K f)
rw [Submodule.mem_toAddSubgroup, mem_span_latticeBasis] at hx
obtain ⟨a, ha, rfl⟩ := hx
refine ⟨⟨a, ha⟩, ?_, (convexBodyLt_mem K f).mp h_mem⟩
rw [ne_eq, AddSubgroup.mk_eq_zero_iff, map_eq_zero, ← ne_eq] at h_nzr
exact Subtype.ne_of_val_ne h_nzr
theorem exists_ne_zero_mem_ringOfIntegers_of_norm_le {B : ℝ}
(h : (minkowskiBound K) < volume (convexBodySum K B)) :
∃ (a : 𝓞 K), a ≠ 0 ∧ |Algebra.norm ℚ (a:K)| ≤ (B / (finrank ℚ K)) ^ (finrank ℚ K) := by
have hB : 0 ≤ B := by
contrapose! h
rw [convexBodySum_empty K h, measure_empty]
exact zero_le (minkowskiBound K)
-- Some inequalities that will be useful later on
have h1 : 0 < (finrank ℚ K : ℝ)⁻¹ := inv_pos.mpr (Nat.cast_pos.mpr finrank_pos)
have h2 : 0 ≤ B / (finrank ℚ K) := div_nonneg hB (Nat.cast_nonneg _)
have h_fund := Zspan.isAddFundamentalDomain (latticeBasis K) volume
have : Countable (Submodule.span ℤ (Set.range (latticeBasis K))).toAddSubgroup := by
change Countable (Submodule.span ℤ (Set.range (latticeBasis K)): Set (E K))
infer_instance
obtain ⟨⟨x, hx⟩, h_nzr, h_mem⟩ := exists_ne_zero_mem_lattice_of_measure_mul_two_pow_lt_measure
h_fund h (convexBodySum_symmetric K B) (convexBodySum_convex K B)
rw [Submodule.mem_toAddSubgroup, mem_span_latticeBasis] at hx
obtain ⟨a, ha, rfl⟩ := hx
refine ⟨⟨a, ha⟩, ?_, ?_⟩
· rw [ne_eq, AddSubgroup.mk_eq_zero_iff, map_eq_zero, ← ne_eq] at h_nzr
exact Subtype.ne_of_val_ne h_nzr
· rw [← rpow_nat_cast, ← rpow_le_rpow_iff (by simp only [Rat.cast_abs, abs_nonneg])
(rpow_nonneg_of_nonneg h2 _) h1, ← rpow_mul h2, mul_inv_cancel (Nat.cast_ne_zero.mpr
(ne_of_gt finrank_pos)), rpow_one, le_div_iff' (Nat.cast_pos.mpr finrank_pos)]
refine le_trans ?_ ((convexBodySum_mem K B).mp h_mem)
rw [← le_div_iff' (Nat.cast_pos.mpr finrank_pos), ← sum_mult_eq, Nat.cast_sum]
refine le_trans ?_ (geom_mean_le_arith_mean Finset.univ _ _ (fun _ _ => Nat.cast_nonneg _)
?_ (fun _ _ => AbsoluteValue.nonneg _ _))
· simp_rw [← prod_eq_abs_norm, rpow_nat_cast]
exact le_of_eq rfl
· rw [← Nat.cast_sum, sum_mult_eq, Nat.cast_pos]
exact finrank_pos
end minkowski
end NumberField.mixedEmbedding