Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ba975fe

Browse files
committed
Snapshot
1 parent ee78b0a commit ba975fe

File tree

20 files changed

+112
-130
lines changed

20 files changed

+112
-130
lines changed

src/analysis/asymptotics/asymptotics.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -1180,7 +1180,7 @@ theorem is_O_with.pow [norm_one_class R] {f : α → R} {g : α → 𝕜} (h : i
11801180
theorem is_O_with.of_pow {n : ℕ} {f : α → 𝕜} {g : α → R} (h : is_O_with c l (f ^ n) (g ^ n))
11811181
(hn : n ≠ 0) (hc : c ≤ c' ^ n) (hc' : 0 ≤ c') : is_O_with c' l f g :=
11821182
is_O_with.of_bound $ (h.weaken hc).bound.mono $ λ x hx,
1183-
le_of_pow_le_pow n (mul_nonneg hc' $ norm_nonneg _) hn.bot_lt $
1183+
le_of_pow_le_pow n (mul_nonneg hc' $ norm_nonneg _) hn $
11841184
calc ‖f x‖ ^ n = ‖(f x) ^ n‖ : (norm_pow _ _).symm
11851185
... ≤ c' ^ n * ‖(g x) ^ n‖ : hx
11861186
... ≤ c' ^ n * ‖g x‖ ^ n :

src/analysis/normed/field/basic.lean

+7-12
Original file line numberDiff line numberDiff line change
@@ -483,23 +483,18 @@ begin
483483
simp,
484484
end
485485

486-
lemma norm_one_of_pow_eq_one {x : α} {k : ℕ+} (h : x ^ (k : ℕ) = 1) :
487-
‖x‖ = 1 :=
488-
begin
489-
rw ( _ : ‖x‖ = 1 ↔ ‖x‖₊ = 1),
490-
apply (@pow_left_inj nnreal _ _ _ ↑k zero_le' zero_le' (pnat.pos k)).mp,
491-
{ rw [← nnnorm_pow, one_pow, h, nnnorm_one], },
492-
{ exact subtype.mk_eq_mk.symm, },
493-
end
494-
495-
lemma norm_map_one_of_pow_eq_one [comm_monoid β] (φ : β →* α) {x : β} {k : ℕ+}
486+
lemma norm_map_one_of_pow_eq_one [monoid β] (φ : β →* α) {x : β} {k : ℕ+}
496487
(h : x ^ (k : ℕ) = 1) :
497488
‖φ x‖ = 1 :=
498489
begin
499-
have : (φ x) ^ (k : ℕ) = 1 := by rw [← monoid_hom.map_pow, h, monoid_hom.map_one],
500-
exact norm_one_of_pow_eq_one this,
490+
rw [← pow_left_inj, ← norm_pow, ← map_pow, h, map_one, norm_one, one_pow],
491+
exacts [norm_nonneg _, zero_le_one, k.ne_zero],
501492
end
502493

494+
lemma norm_one_of_pow_eq_one {x : α} {k : ℕ+} (h : x ^ (k : ℕ) = 1) :
495+
‖x‖ = 1 :=
496+
norm_map_one_of_pow_eq_one (monoid_hom.id α) h
497+
503498
end normed_division_ring
504499

505500
/-- A normed field is a field with a norm satisfying ‖x y‖ = ‖x‖ ‖y‖. -/

src/analysis/special_functions/japanese_bracket.lean

+2-2
Original file line numberDiff line numberDiff line change
@@ -35,8 +35,8 @@ variables {E : Type*} [normed_add_comm_group E]
3535

3636
lemma sqrt_one_add_norm_sq_le (x : E) : real.sqrt (1 + ‖x‖^2) ≤ 1 + ‖x‖ :=
3737
begin
38-
refine le_of_pow_le_pow 2 (by positivity) two_pos _,
39-
simp [sq_sqrt (zero_lt_one_add_norm_sq x).le, add_pow_two],
38+
rw [real.sqrt_le_left (add_nonneg zero_le_one (norm_nonneg _)), add_sq, one_pow, mul_one],
39+
exact add_le_add_right ((le_add_iff_nonneg_right _).2 $ mul_nonneg zero_le_two (norm_nonneg _)) _
4040
end
4141

4242
lemma one_add_norm_le_sqrt_two_mul_sqrt (x : E) : 1 + ‖x‖ ≤ (real.sqrt 2) * sqrt (1 + ‖x‖^2) :=

src/analysis/special_functions/trigonometric/bounds.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@ begin
107107
have bd2 : cos y ^ 2 < 1,
108108
{ apply lt_of_le_of_ne y.cos_sq_le_one,
109109
rw cos_sq',
110-
simpa only [ne.def, sub_eq_self, pow_eq_zero_iff, nat.succ_pos']
110+
simpa only [ne.def, sub_eq_self, pow_eq_zero_iff, nat.succ_ne_zero]
111111
using (sin_pos hy).ne' },
112112
rwa [lt_inv, inv_one],
113113
{ exact zero_lt_one },

src/combinatorics/additive/behrend.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -468,7 +468,7 @@ begin
468468
have hn₂ : 2 ≤ n := two_le_n_value (hN.trans' $ by norm_num1),
469469
have : (2 * d_value N - 1)^n ≤ N := le_N (hN.trans' $ by norm_num1),
470470
refine ((bound_aux hd.ne' hn₂).trans $ cast_le.2 $ roth_number_nat.mono this).trans_lt' _,
471-
refine (div_lt_div_of_lt hn $ pow_lt_pow_of_lt_left (bound hN) _ _).trans_le' _,
471+
refine (div_lt_div_of_lt hn $ pow_lt_pow_of_lt_left (bound hN) _ (ne_of_gt _)).trans_le' _,
472472
{ exact div_nonneg (rpow_nonneg_of_nonneg (cast_nonneg _) _) (exp_pos _).le },
473473
{ exact tsub_pos_of_lt (three_le_n_value $ hN.trans' $ by norm_num1) },
474474
rw [←rpow_nat_cast, div_rpow (rpow_nonneg_of_nonneg hN₀.le _) (exp_pos _).le, ←rpow_mul hN₀.le,

src/data/finite/card.lean

+2-2
Original file line numberDiff line numberDiff line change
@@ -56,8 +56,8 @@ begin
5656
rw [nat.card_eq_fintype_card, fintype.card_pos_iff],
5757
end
5858

59-
lemma finite.card_pos [finite α] [h : nonempty α] : 0 < nat.card α :=
60-
finite.card_pos_iff.mpr h
59+
lemma finite.card_pos [finite α] [h : nonempty α] : 0 < nat.card α := finite.card_pos_iff.mpr h
60+
lemma finite.card_ne_zero [finite α] [h : nonempty α] : nat.card α ≠ 0 := finite.card_pos.ne'
6161

6262
namespace finite
6363

src/data/nat/choose/factorization.lean

+2-2
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ begin
4040
by_cases h : (choose n k).factorization p = 0, { simp [h] },
4141
have hp : p.prime := not.imp_symm (choose n k).factorization_eq_zero_of_non_prime h,
4242
have hkn : k ≤ n, { refine le_of_not_lt (λ hnk, h _), simp [choose_eq_zero_of_lt hnk] },
43-
rw [factorization_def _ hp, @padic_val_nat_def _ ⟨hp⟩ _ (choose_pos hkn)],
43+
rw [factorization_def _ hp, @padic_val_nat_def _ ⟨hp⟩ _ (choose_pos hkn).ne'],
4444
simp only [hp.multiplicity_choose hkn (lt_add_one _), part_enat.get_coe],
4545
refine (finset.card_filter_le _ _).trans (le_of_eq (nat.card_Ico _ _)),
4646
end
@@ -69,7 +69,7 @@ begin
6969
{ exact factorization_eq_zero_of_non_prime (choose n k) hp },
7070
cases lt_or_le n k with hnk hkn,
7171
{ simp [choose_eq_zero_of_lt hnk] },
72-
rw [factorization_def _ hp, @padic_val_nat_def _ ⟨hp⟩ _ (choose_pos hkn)],
72+
rw [factorization_def _ hp, @padic_val_nat_def _ ⟨hp⟩ _ (choose_pos hkn).ne'],
7373
simp only [hp.multiplicity_choose hkn (lt_add_one _), part_enat.get_coe,
7474
finset.card_eq_zero, finset.filter_eq_empty_iff, not_le],
7575
intros i hi,

src/data/nat/factorization/basic.lean

+3-3
Original file line numberDiff line numberDiff line change
@@ -436,7 +436,7 @@ begin
436436
apply add_left_injective d.factorization,
437437
simp only,
438438
rw [tsub_add_cancel_of_le $ (nat.factorization_le_iff_dvd hd hn).mpr h,
439-
←nat.factorization_mul (nat.div_pos (nat.le_of_dvd hn.bot_lt h) hd.bot_lt).ne' hd,
439+
←nat.factorization_mul (nat.div_pos (nat.le_of_dvd hn.bot_lt h) hd).ne' hd,
440440
nat.div_mul_cancel h],
441441
end
442442

@@ -487,7 +487,7 @@ and `n'` such that `n'` is not divisible by `p` and `n = p^e * n'`. -/
487487
lemma exists_eq_pow_mul_and_not_dvd {n : ℕ} (hn : n ≠ 0) (p : ℕ) (hp : p ≠ 1) :
488488
∃ e n' : ℕ, ¬ p ∣ n' ∧ n = p ^ e * n' :=
489489
let ⟨a', h₁, h₂⟩ := multiplicity.exists_eq_pow_mul_and_not_dvd
490-
(multiplicity.finite_nat_iff.mpr ⟨hp, nat.pos_of_ne_zero hn⟩) in
490+
(multiplicity.finite_nat_iff.mpr ⟨hp, hn⟩) in
491491
⟨_, a', h₂, h₁⟩
492492

493493
lemma dvd_iff_div_factorization_eq_tsub {d n : ℕ} (hd : d ≠ 0) (hdn : d ≤ n) :
@@ -712,7 +712,7 @@ def rec_on_prime_pow {P : ℕ → Sort*} (h0 : P 0) (h1 : P 1)
712712
exact pow_succ_factorization_not_dvd (k + 1).succ_ne_zero hp },
713713
{ exact htp },
714714
{ apply hk _ (nat.div_lt_of_lt_mul _),
715-
simp [lt_mul_iff_one_lt_left nat.succ_pos', one_lt_pow_iff htp.ne, hp.one_lt] },
715+
simp [lt_mul_iff_one_lt_left nat.succ_pos', one_lt_pow_iff htp.ne', hp.one_lt] },
716716
end
717717
end
718718

src/data/nat/prime.lean

+14-14
Original file line numberDiff line numberDiff line change
@@ -291,8 +291,8 @@ theorem min_fac_pos (n : ℕ) : 0 < min_fac n :=
291291
by by_cases n1 : n = 1;
292292
[exact n1.symm ▸ dec_trivial, exact (min_fac_prime n1).pos]
293293

294-
theorem min_fac_le {n : ℕ} (H : 0 < n) : min_fac n ≤ n :=
295-
le_of_dvd H (min_fac_dvd n)
294+
theorem min_fac_le {n : ℕ} (H : n ≠ 0) : min_fac n ≤ n :=
295+
le_of_dvd H.bot_lt (min_fac_dvd n)
296296

297297
theorem le_min_fac {m n : ℕ} : n = 1 ∨ m ≤ min_fac n ↔ ∀ p, prime p → p ∣ n → m ≤ p :=
298298
⟨λ h p pp d, h.elim
@@ -326,19 +326,19 @@ much faster.
326326
instance decidable_prime (p : ℕ) : decidable (prime p) :=
327327
decidable_of_iff' _ prime_def_min_fac
328328

329-
theorem not_prime_iff_min_fac_lt {n : ℕ} (n2 : 2 n) : ¬ prime n ↔ min_fac n < n :=
330-
(not_congr $ prime_def_min_fac.trans $ and_iff_right n2).trans $
331-
(lt_iff_le_and_ne.trans $ and_iff_right $ min_fac_le $ le_of_succ_le n2).symm
329+
theorem not_prime_iff_min_fac_lt {n : ℕ} (hn : 1 < n) : ¬ prime n ↔ min_fac n < n :=
330+
(not_congr $ prime_def_min_fac.trans $ and_iff_right hn).trans $
331+
(lt_iff_le_and_ne.trans $ and_iff_right $ min_fac_le $ hn.ne_bot).symm
332332

333-
lemma min_fac_le_div {n : ℕ} (pos : 0 < n) (np : ¬ prime n) : min_fac n ≤ n / min_fac n :=
333+
lemma min_fac_le_div {n : ℕ} (hn : n ≠ 0) (np : ¬ prime n) : min_fac n ≤ n / min_fac n :=
334334
match min_fac_dvd n with
335-
| ⟨0, h0⟩ := absurd pos $ by rw [h0, mul_zero]; exact dec_trivial
335+
| ⟨0, h0⟩ := (hn $ h0.trans (mul_zero _)).elim
336336
| ⟨1, h1⟩ :=
337337
begin
338338
rw mul_one at h1,
339339
rw [prime_def_min_fac, not_and_distrib, ← h1, eq_self_iff_true, not_true, or_false,
340340
not_le] at np,
341-
rw [le_antisymm (le_of_lt_succ np) (succ_le_of_lt pos), min_fac_one, nat.div_one]
341+
rw [le_antisymm (le_of_lt_succ np) (one_le_iff_ne_zero.2 hn), min_fac_one, nat.div_one]
342342
end
343343
| ⟨(x+2), hx⟩ :=
344344
begin
@@ -351,8 +351,8 @@ end
351351
/--
352352
The square of the smallest prime factor of a composite number `n` is at most `n`.
353353
-/
354-
lemma min_fac_sq_le_self {n : ℕ} (w : 0 < n) (h : ¬ prime n) : (min_fac n)^2 ≤ n :=
355-
have t : (min_fac n) ≤ (n/min_fac n) := min_fac_le_div w h,
354+
lemma min_fac_sq_le_self {n : ℕ} (h0 : n ≠ 0) (h : ¬ prime n) : (min_fac n)^2 ≤ n :=
355+
have t : (min_fac n) ≤ (n / min_fac n) := min_fac_le_div h0 h,
356356
calc
357357
(min_fac n)^2 = (min_fac n) * (min_fac n) : sq (min_fac n)
358358
... ≤ (n/min_fac n) * (min_fac n) : nat.mul_le_mul_right (min_fac n) t
@@ -585,13 +585,13 @@ theorem coprime_pow_primes {p q : ℕ} (n m : ℕ) (pp : prime p) (pq : prime q)
585585
theorem coprime_or_dvd_of_prime {p} (pp : prime p) (i : ℕ) : coprime p i ∨ p ∣ i :=
586586
by rw [pp.dvd_iff_not_coprime]; apply em
587587

588-
lemma coprime_of_lt_prime {n p} (n_pos : 0 < n) (hlt : n < p) (pp : prime p) :
588+
lemma coprime_of_lt_prime {n p} (h0 : n ≠ 0) (hlt : n < p) (pp : prime p) :
589589
coprime p n :=
590-
(coprime_or_dvd_of_prime pp n).resolve_right $ λ h, lt_le_antisymm hlt (le_of_dvd n_pos h)
590+
(coprime_or_dvd_of_prime pp n).resolve_right $ λ h, lt_le_antisymm hlt (le_of_dvd h0.bot_lt h)
591591

592-
lemma eq_or_coprime_of_le_prime {n p} (n_pos : 0 < n) (hle : n ≤ p) (pp : prime p) :
592+
lemma eq_or_coprime_of_le_prime {n p} (h0 : n ≠ 0) (hle : n ≤ p) (pp : prime p) :
593593
p = n ∨ coprime p n :=
594-
hle.eq_or_lt.imp eq.symm (λ h, coprime_of_lt_prime n_pos h pp)
594+
hle.eq_or_lt.imp eq.symm (λ h, coprime_of_lt_prime h0 h pp)
595595

596596
theorem dvd_prime_pow {p : ℕ} (pp : prime p) {m i : ℕ} : i ∣ (p^m) ↔ ∃ k ≤ m, i = p^k :=
597597
by simp_rw [dvd_prime_pow (prime_iff.mp pp) m, associated_eq_eq]

src/data/nat/squarefree.lean

+11-11
Original file line numberDiff line numberDiff line change
@@ -148,24 +148,24 @@ begin
148148
exact ⟨H1, dvd_trans (dvd_mul_left _ _) H2, λ p pp dp, H3 _ pp (this _ pp dp)⟩ }
149149
end
150150

151-
theorem min_sq_fac_aux_has_prop : ∀ {n : ℕ} k, 0 < n → ∀ i, k = 2*i+3
151+
theorem min_sq_fac_aux_has_prop : ∀ {n : ℕ} k, n ≠ 0 → ∀ i, k = 2*i+3
152152
(∀ m, prime m → m ∣ n → k ≤ m) → min_sq_fac_prop n (min_sq_fac_aux n k)
153153
| n k := λ n0 i e ih, begin
154154
rw min_sq_fac_aux,
155155
by_cases h : n < k*k; simp [h],
156156
{ refine squarefree_iff_prime_squarefree.2 (λ p pp d, _),
157157
have := ih p pp (dvd_trans ⟨_, rfl⟩ d),
158158
have := nat.mul_le_mul this this,
159-
exact not_le_of_lt h (le_trans this (le_of_dvd n0 d)) },
159+
exact not_le_of_lt h (le_trans this (le_of_dvd n0.bot_lt d)) },
160160
have k2 : 2 ≤ k, { subst e, exact dec_trivial },
161-
have k0 : 0 < k := lt_of_lt_of_le dec_trivial k2,
161+
have k0 : k ≠ 0 := (lt_of_lt_of_le dec_trivial k2).ne',
162162
have IH : ∀ n', n' ∣ n → ¬ k ∣ n' → min_sq_fac_prop n' (n'.min_sq_fac_aux (k + 2)),
163163
{ intros n' nd' nk,
164-
have hn' := le_of_dvd n0 nd',
164+
have hn' := le_of_dvd n0.bot_lt nd',
165165
refine
166166
have nat.sqrt n' - k < nat.sqrt n + 2 - k, from
167167
lt_of_le_of_lt (nat.sub_le_sub_right (nat.sqrt_le_sqrt hn') _) (nat.min_fac_lemma n k h),
168-
@min_sq_fac_aux_has_prop n' (k+2) (pos_of_dvd_of_pos nd' n0)
168+
@min_sq_fac_aux_has_prop n' (k+2) (pos_of_dvd_of_pos nd' n0.bot_lt).ne'
169169
(i+1) (by simp [e, left_distrib]) (λ m m2 d, _),
170170
cases nat.eq_or_lt_of_le (ih m m2 (dvd_trans d nd')) with me ml,
171171
{ subst me, contradiction },
@@ -191,10 +191,10 @@ begin
191191
{ exact ⟨prime_two, (dvd_div_iff d2).1 d4, λ p pp _, pp.two_le⟩ },
192192
{ cases nat.eq_zero_or_pos n with n0 n0, { subst n0, cases d4 dec_trivial },
193193
refine min_sq_fac_prop_div _ prime_two d2 (mt (dvd_div_iff d2).2 d4) _,
194-
refine min_sq_fac_aux_has_prop 3 (nat.div_pos (le_of_dvd n0 d2) dec_trivial) 0 rfl _,
194+
refine min_sq_fac_aux_has_prop 3 (nat.div_pos (le_of_dvd n0 d2) dec_trivial).ne' 0 rfl _,
195195
refine λ p pp dp, succ_le_of_lt (lt_of_le_of_ne pp.two_le _),
196196
rintro rfl, contradiction },
197-
{ cases nat.eq_zero_or_pos n with n0 n0, { subst n0, cases d2 dec_trivial },
197+
{ rcases eq_or_ne n 0 with rfl | n0, { cases d2 dec_trivial },
198198
refine min_sq_fac_aux_has_prop _ n0 0 rfl _,
199199
refine λ p pp dp, succ_le_of_lt (lt_of_le_of_ne pp.two_le _),
200200
rintro rfl, contradiction },
@@ -213,7 +213,7 @@ begin
213213
have fd := min_fac_dvd m,
214214
exact le_trans
215215
(this.2.2 _ (min_fac_prime $ ne_of_gt m2) (dvd_trans (mul_dvd_mul fd fd) md))
216-
(min_fac_le $ lt_of_lt_of_le dec_trivial m2),
216+
(min_fac_le (lt_of_lt_of_le dec_trivial m2).ne'),
217217
end
218218

219219
lemma squarefree_iff_min_sq_fac {n : ℕ} :
@@ -306,15 +306,15 @@ begin
306306
rw hsa at hn,
307307
obtain ⟨hlts, hlta⟩ := canonically_ordered_comm_semiring.mul_pos.mp hn,
308308
rw hsb at hsa hn hlts,
309-
refine ⟨a, b, hlta, (pow_pos_iff zero_lt_two).mp hlts, hsa.symm, _⟩,
309+
refine ⟨a, b, hlta, (pow_pos_iff two_ne_zero).mp hlts, hsa.symm, _⟩,
310310
rintro x ⟨y, hy⟩,
311311
rw nat.is_unit_iff,
312312
by_contra hx,
313313
refine lt_le_antisymm _ (finset.le_max' S ((b * x) ^ 2) _),
314314
{ simp_rw [S, hsa, finset.sep_def, finset.mem_filter, finset.mem_range],
315315
refine ⟨lt_succ_iff.mpr (le_of_dvd hn _), _, ⟨b * x, rfl⟩⟩; use y; rw hy; ring },
316316
{ convert lt_mul_of_one_lt_right hlts
317-
(one_lt_pow 2 x zero_lt_two (one_lt_iff_ne_zero_and_ne_one.mpr ⟨λ h, by simp * at *, hx⟩)),
317+
(one_lt_pow 2 x two_ne_zero (one_lt_iff_ne_zero_and_ne_one.mpr ⟨λ h, by simp * at *, hx⟩)),
318318
rw mul_pow },
319319
end
320320

@@ -419,7 +419,7 @@ lemma squarefree_helper_3 (n n' k k' c : ℕ) (e : k + 1 = k')
419419
{ rw [← hn', nat.mul_div_cancel _ k0'] },
420420
have k2 : 2 ≤ bit1 k := nat.succ_le_succ (bit0_pos k0),
421421
have pk : (bit1 k).prime,
422-
{ refine nat.prime_def_min_fac.2 ⟨k2, le_antisymm (nat.min_fac_le k0') _⟩,
422+
{ refine nat.prime_def_min_fac.2 ⟨k2, le_antisymm (nat.min_fac_le k0'.ne') _⟩,
423423
exact ih _ (nat.min_fac_prime (ne_of_gt k2)) (dvd_trans (nat.min_fac_dvd _) dk) },
424424
have dkk' : ¬ bit1 k ∣ bit1 n', {rw [nat.dvd_iff_mod_eq_zero, hc], exact ne_of_gt c0},
425425
have dkk : ¬ bit1 k * bit1 k ∣ bit1 n, {rwa [← nat.dvd_div_iff dk, this]},

src/data/nat/totient.lean

+13-6
Original file line numberDiff line numberDiff line change
@@ -42,10 +42,17 @@ lemma totient_le (n : ℕ) : φ n ≤ n :=
4242
lemma totient_lt (n : ℕ) (hn : 1 < n) : φ n < n :=
4343
(card_lt_card (filter_ssubset.20, by simp [hn.ne', pos_of_gt hn]⟩)).trans_eq (card_range n)
4444

45-
lemma totient_pos : ∀ {n : ℕ}, 0 < n → 0 < φ n
45+
@[simp] lemma totient_eq_zero : ∀ {n : ℕ}, φ n = 0 ↔ n = 0
4646
| 0 := dec_trivial
4747
| 1 := by simp [totient]
48-
| (n+2) := λ h, card_pos.21, mem_filter.2 ⟨mem_range.2 dec_trivial, coprime_one_right _⟩⟩
48+
| (n + 2) :=
49+
iff_of_false (card_pos.21, mem_filter.2 ⟨mem_range.2 dec_trivial, coprime_one_right _⟩⟩).ne'
50+
(n + 1).succ_ne_zero
51+
52+
lemma totient_ne_zero {n : ℕ} : φ n ≠ 0 ↔ n ≠ 0 := totient_eq_zero.not
53+
54+
@[simp] lemma totient_pos {n : ℕ} : 0 < φ n ↔ n ≠ 0 :=
55+
pos_iff_ne_zero.trans totient_ne_zero
4956

5057
lemma filter_coprime_Ico_eq_totient (a n : ℕ) :
5158
((Ico n (n+a)).filter (coprime a)).card = totient a :=
@@ -54,17 +61,17 @@ begin
5461
exact periodic_coprime a,
5562
end
5663

57-
lemma Ico_filter_coprime_le {a : ℕ} (k n : ℕ) (a_pos : 0 < a) :
64+
lemma Ico_filter_coprime_le {a : ℕ} (k n : ℕ) (h0 : a ≠ 0) :
5865
((Ico k (k + n)).filter (coprime a)).card ≤ totient a * (n / a + 1) :=
5966
begin
6067
conv_lhs { rw ←nat.mod_add_div n a },
6168
induction n / a with i ih,
6269
{ rw ←filter_coprime_Ico_eq_totient a k,
63-
simp only [add_zero, mul_one, mul_zero, le_of_lt (mod_lt n a_pos)],
70+
simp only [add_zero, mul_one, mul_zero, le_of_lt (mod_lt n h0.bot_lt)],
6471
mono,
6572
refine monotone_filter_left a.coprime _,
6673
simp only [finset.le_eq_subset],
67-
exact Ico_subset_Ico rfl.le (add_le_add_left (le_of_lt (mod_lt n a_pos)) k), },
74+
exact Ico_subset_Ico rfl.le (add_le_add_left (le_of_lt (mod_lt n h0.bot_lt)) k), },
6875
simp only [mul_succ],
6976
simp_rw ←add_assoc at ih ⊢,
7077
calc (filter a.coprime (Ico k (k + n % a + a * i + a))).card
@@ -354,7 +361,7 @@ lemma totient_mul_of_prime_of_dvd {p n : ℕ} (hp : p.prime) (h : p ∣ n) :
354361
begin
355362
have h1 := totient_gcd_mul_totient_mul p n,
356363
rw [(gcd_eq_left h), mul_assoc] at h1,
357-
simpa [(totient_pos hp.pos).ne', mul_comm] using h1,
364+
simpa [totient_ne_zero.2 hp.ne_zero, mul_comm] using h1,
358365
end
359366

360367
lemma totient_mul_of_prime_of_not_dvd {p n : ℕ} (hp : p.prime) (h : ¬ p ∣ n) :

src/field_theory/abel_ruffini.lean

+2-3
Original file line numberDiff line numberDiff line change
@@ -94,10 +94,9 @@ section gal_X_pow_sub_C
9494

9595
lemma gal_X_pow_sub_one_is_solvable (n : ℕ) : is_solvable (X ^ n - 1 : F[X]).gal :=
9696
begin
97-
rcases n.eq_zero_or_pos with rfl|hn,
97+
rcases eq_or_ne n 0 with rfl|hn,
9898
{ rw [pow_zero, sub_self],
9999
exact gal_zero_is_solvable },
100-
have hn' : 0 < n := pos_iff_ne_zero.mpr hn,
101100
have hn'' : (X ^ n - 1 : F[X]) ≠ 0 := X_pow_sub_C_ne_zero hn' 1,
102101
apply is_solvable_of_comm,
103102
intros σ τ,
@@ -124,7 +123,7 @@ begin
124123
{ rw [hn, pow_zero, ←C_1, ←C_sub],
125124
exact gal_C_is_solvable (1 - a) },
126125
have hn' : 0 < n := pos_iff_ne_zero.mpr hn,
127-
have hn'' : X ^ n - C a ≠ 0 := X_pow_sub_C_ne_zero hn' a,
126+
have hn'' : X ^ n - C a ≠ 0 := X_pow_sub_C_ne_zero hn a,
128127
have hn''' : (X ^ n - 1 : F[X]) ≠ 0 := X_pow_sub_C_ne_zero hn' 1,
129128
have mem_range : ∀ {c}, c ^ n = 1 → ∃ d, algebra_map F (X ^ n - C a).splitting_field d = c :=
130129
λ c hc, ring_hom.mem_range.mp (minpoly.mem_range_of_degree_eq_one F c (h.def.resolve_left hn'''

src/group_theory/schreier.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -192,7 +192,7 @@ begin
192192
have h2 := card_commutator_dvd_index_center_pow (closure_commutator_representatives G),
193193
rw card_commutator_set_closure_commutator_representatives at h1 h2,
194194
rw card_commutator_closure_commutator_representatives at h2,
195-
replace h1 := h1.trans (nat.pow_le_pow_of_le_right finite.card_pos
195+
replace h1 := h1.trans (nat.pow_le_pow_of_le_right finite.card_ne_zero
196196
(rank_closure_commutator_representations_le G)),
197197
replace h2 := h2.trans (pow_dvd_pow _ (add_le_add_right (mul_le_mul_right' h1 _) 1)),
198198
rw ← pow_succ' at h2,

src/number_theory/fermat4.lean

+1-1
Original file line numberDiff line numberDiff line change
@@ -91,7 +91,7 @@ begin
9191
exact (fermat_42.mul (int.coe_nat_ne_zero.mpr (nat.prime.ne_zero hp))).mpr h.1,
9292
apply nat.le_lt_antisymm (h.2 _ _ _ hf),
9393
rw [int.nat_abs_mul, lt_mul_iff_one_lt_left, int.nat_abs_pow, int.nat_abs_of_nat],
94-
{ exact nat.one_lt_pow _ _ zero_lt_two (nat.prime.one_lt hp) },
94+
{ exact nat.one_lt_pow _ _ two_ne_zero hp.one_lt },
9595
{ exact (nat.pos_of_ne_zero (int.nat_abs_ne_zero_of_ne_zero (ne_zero hf))) },
9696
end
9797

0 commit comments

Comments
 (0)