@@ -171,7 +171,7 @@ begin
171
171
rw [finset.prod_singleton, ht, mul_left_comm, mul_comm, ←mul_assoc, mul_assoc] at this ,
172
172
have : (p ^ (padic_val_nat p n) * p : ℤ) ∣ n := ⟨_, this ⟩,
173
173
simp only [←pow_succ', ←int.nat_abs_dvd_iff_dvd, int.nat_abs_of_nat, int.nat_abs_pow] at this ,
174
- exact pow_succ_padic_val_nat_not_dvd hn'.ne' this ,
174
+ exact pow_succ_padic_val_nat_not_dvd hn' this ,
175
175
{ rintro x - y - hxy,
176
176
apply nat.succ_injective,
177
177
exact nat.pow_right_injective hp.two_le hxy }
@@ -230,7 +230,13 @@ begin
230
230
simpa only [hq'.le, real.coe_to_nnreal', max_eq_left, sub_nonneg] using hex },
231
231
end
232
232
233
- lemma cyclotomic_eval_lt_sub_one_pow_totient {n : ℕ} {q : ℝ} (hn' : 3 ≤ n) (hq' : 1 < q) :
233
+ lemma sub_one_pow_totient_le_cyclotomic_eval {q : ℝ} (hq' : 1 < q) :
234
+ ∀ n, (q - 1 ) ^ totient n ≤ (cyclotomic n ℝ).eval q
235
+ | 0 := by simp only [totient_zero, pow_zero, cyclotomic_zero, eval_one]
236
+ | 1 := by simp only [totient_one, pow_one, cyclotomic_one, eval_sub, eval_X, eval_one]
237
+ | (n + 2 ) := (sub_one_pow_totient_lt_cyclotomic_eval dec_trivial hq').le
238
+
239
+ lemma cyclotomic_eval_lt_add_one_pow_totient {n : ℕ} {q : ℝ} (hn' : 3 ≤ n) (hq' : 1 < q) :
234
240
(cyclotomic n ℝ).eval q < (q + 1 ) ^ totient n :=
235
241
begin
236
242
have hn : 0 < n := pos_of_gt hn',
@@ -259,9 +265,9 @@ begin
259
265
rintro rfl,
260
266
exact hn.ne' (hζ.unique is_primitive_root.zero) },
261
267
have : ζ.re < 0 ∧ ζ.im = 0 := ⟨h.1 .lt_of_ne _, h.2 ⟩,
262
- rw [←complex.arg_eq_pi_iff, hζ.arg_eq_pi_iff hn.ne'] at this ,
263
- rw this at hζ,
264
- linarith [hζ.unique $ is_primitive_root.neg_one 0 two_ne_zero.symm],
268
+ { rw [←complex.arg_eq_pi_iff, hζ.arg_eq_pi_iff hn.ne'] at this ,
269
+ rw this at hζ,
270
+ linarith [hζ.unique $ is_primitive_root.neg_one 0 two_ne_zero.symm] } ,
265
271
{ contrapose! hζ₀,
266
272
ext; simp [hζ₀, h.2 ] } },
267
273
have : ¬eval ↑q (cyclotomic n ℂ) = 0 ,
@@ -295,33 +301,28 @@ begin
295
301
exact ⟨ζ, hζ, by simp [hhζ]⟩ },
296
302
end
297
303
298
- lemma sub_one_lt_nat_abs_cyclotomic_eval {n : ℕ} {q : ℕ} (hn' : 1 < n) (hq' : q ≠ 1 ) :
299
- q - 1 < ((cyclotomic n ℤ).eval ↑q).nat_abs :=
304
+ lemma cyclotomic_eval_le_add_one_pow_totient {q : ℝ} (hq' : 1 < q) :
305
+ ∀ n, (cyclotomic n ℝ).eval q ≤ (q + 1 ) ^ totient n
306
+ | 0 := by simp
307
+ | 1 := by simp [add_assoc, add_nonneg, zero_le_one]
308
+ | 2 := by simp
309
+ | (n + 3 ) := (cyclotomic_eval_lt_add_one_pow_totient dec_trivial hq').le
310
+
311
+ lemma sub_one_pow_totient_lt_nat_abs_cyclotomic_eval {n : ℕ} {q : ℕ} (hn' : 1 < n) (hq : q ≠ 1 ) :
312
+ (q - 1 ) ^ totient n < ((cyclotomic n ℤ).eval ↑q).nat_abs :=
300
313
begin
301
- rcases q with _ | _ | q,
302
- iterate 2
303
- { rw [pos_iff_ne_zero, ne.def, int.nat_abs_eq_zero],
304
- intro h,
305
- have := degree_eq_one_of_irreducible_of_root (cyclotomic.irreducible hn'.ne_bot) h,
306
- rw [degree_cyclotomic, with_top.coe_eq_one, totient_eq_one_iff] at this ,
307
- rcases this with rfl|rfl; simpa using h },
308
- suffices : (q.succ : ℝ) < (eval (↑q + 1 + 1 ) (cyclotomic n ℤ)).nat_abs,
309
- { exact_mod_cast this },
310
- calc _ ≤ ((q + 2 - 1 ) ^ n.totient : ℝ) : _
311
- ... < _ : _,
312
- { norm_num,
313
- convert pow_mono (by simp : 1 ≤ (q : ℝ) + 1 ) (totient_pos (pos_of_gt hn') : 1 ≤ n.totient),
314
- { simp },
315
- { ring }, },
316
- convert sub_one_pow_totient_lt_cyclotomic_eval (show 2 ≤ n, by linarith)
317
- (show (1 : ℝ) < q + 2 , by {norm_cast, linarith}),
318
- norm_cast,
319
- erw cyclotomic.eval_apply (q + 2 : ℤ) n (algebra_map ℤ ℝ),
320
- simp only [int.coe_nat_succ, eq_int_cast],
321
- norm_cast,
322
- rw [int.coe_nat_abs_eq_normalize, int.normalize_of_nonneg],
323
- simp only [int.coe_nat_succ],
324
- exact cyclotomic_nonneg n (by linarith),
314
+ rcases hq.lt_or_lt.imp_left nat.lt_one_iff.mp with rfl | hq',
315
+ { rw [zero_tsub, zero_pow (nat.totient_pos.2 hn'.ne_bot), pos_iff_ne_zero, int.nat_abs_ne_zero,
316
+ nat.cast_zero, ← coeff_zero_eq_eval_zero, cyclotomic_coeff_zero _ hn'],
317
+ exact one_ne_zero },
318
+ rw [← @nat.cast_lt ℝ, nat.cast_pow, nat.cast_sub hq'.le, nat.cast_one, int.cast_nat_abs],
319
+ refine (sub_one_pow_totient_lt_cyclotomic_eval hn' (nat.one_lt_cast.2 hq')).trans_le _,
320
+ exact (cyclotomic.eval_apply (q : ℤ) n (algebra_map ℤ ℝ)).trans_le (le_abs_self _)
325
321
end
326
322
323
+ lemma sub_one_lt_nat_abs_cyclotomic_eval {n : ℕ} {q : ℕ} (hn' : 1 < n) (hq : q ≠ 1 ) :
324
+ q - 1 < ((cyclotomic n ℤ).eval ↑q).nat_abs :=
325
+ calc q - 1 ≤ (q - 1 ) ^ totient n : nat.le_self_pow (nat.totient_ne_zero.2 hn'.ne_bot) _
326
+ ... < ((cyclotomic n ℤ).eval ↑q).nat_abs : sub_one_pow_totient_lt_nat_abs_cyclotomic_eval hn' hq
327
+
327
328
end polynomial
0 commit comments