diff --git a/src/algebra/algebra/basic.lean b/src/algebra/algebra/basic.lean index d721b86182279..cb560fa0c3763 100644 --- a/src/algebra/algebra/basic.lean +++ b/src/algebra/algebra/basic.lean @@ -808,6 +808,10 @@ by rw [←(one_smul A m), ←smul_assoc, algebra.smul_def, mul_one, one_smul] @[simp] lemma algebra_map_smul (r : R) (m : M) : ((algebra_map R A) r) • m = r • m := (algebra_compatible_smul A r m).symm +-- @[simp] lemma op_algebra_map_smul [module Rᵐᵒᵖ M] [module Aᵐᵒᵖ M] (r : R) (m : M) : +-- mul_opposite.op ((algebra_map R A) r) • m = mul_opposite.op r • m := +-- by rw [←(one_smul Aᵐᵒᵖ m), ←smul_assoc, smul_eq_mul, mul_one] + lemma int_cast_smul {k V : Type*} [comm_ring k] [add_comm_group V] [module k V] (r : ℤ) (x : V) : (r : k) • x = r • x := algebra_map_smul k r x diff --git a/src/algebra/algebra/restrict_scalars.lean b/src/algebra/algebra/restrict_scalars.lean index 39284c7145a49..a0ad66aabad74 100644 --- a/src/algebra/algebra/restrict_scalars.lean +++ b/src/algebra/algebra/restrict_scalars.lean @@ -172,7 +172,7 @@ lemma restrict_scalars.add_equiv_symm_map_smul_smul (r : R) (s : S) (x : M) : = r • (restrict_scalars.add_equiv R S M ).symm (s • x) := by { rw [algebra.smul_def, mul_smul], refl, } -lemma restrict_scalars.lsmul_apply_apply[module Sᵐᵒᵖ M] [is_central_scalar S M] +lemma restrict_scalars.lsmul_apply_apply [module Sᵐᵒᵖ M] [is_central_scalar S M] (s : S) (x : restrict_scalars R S M) : restrict_scalars.lsmul R S M s x = (restrict_scalars.add_equiv R S M).symm (s • (restrict_scalars.add_equiv R S M x)) := diff --git a/src/algebra/triv_sq_zero_ext.lean b/src/algebra/triv_sq_zero_ext.lean index 49987af59314c..efaf64720519e 100644 --- a/src/algebra/triv_sq_zero_ext.lean +++ b/src/algebra/triv_sq_zero_ext.lean @@ -586,21 +586,19 @@ instance algebra' : algebra S (tsze R M) := show r • x.2 = algebra_map S R r • x.2 + op x.1 • 0, by rw [smul_zero, add_zero, algebra_map_smul], op_smul_def' := λ x r, ext (algebra.op_smul_def _ _) $ - show mul_opposite.op r • x.2 = x.1 • 0 + algebra_map S R r • x.2, - by rw [smul_zero, zero_add, op_smul_eq_smul, algebra_map_smul], + show mul_opposite.op r • x.2 = x.1 • 0 + mul_opposite.op (algebra_map S R r) • x.2, + by rw [smul_zero, zero_add, op_smul_eq_smul]; sorry, .. (triv_sq_zero_ext.inl_hom R M).comp (algebra_map S R) } lemma algebra_map_eq_inl' (s : S) : algebra_map S (tsze R M) s = inl (algebra_map S R s) := rfl -- for the rest of this section we only care about the case when `R = S` -variables [module Rᵐᵒᵖ M] [is_central_scalar R M] -- shortcut instance for the common case instance : algebra R' (tsze R' M) := triv_sq_zero_ext.algebra' _ _ _ lemma algebra_map_eq_inl : ⇑(algebra_map R' (tsze R' M)) = inl := rfl lemma algebra_map_eq_inl_hom : algebra_map R' (tsze R' M) = inl_hom R' M := rfl -lemma algebra_map_eq_inl' (s : S) : algebra_map S (tsze R M) s = inl (algebra_map S R s) := rfl /-- The canonical `R`-algebra projection `triv_sq_zero_ext R M → R`. -/ @[simps]