From 3e7eb7d296ff69a0b86816757835c8235cd2951a Mon Sep 17 00:00:00 2001 From: Biiiilly Date: Thu, 20 Oct 2022 17:34:44 +0100 Subject: [PATCH] changes on dependent issues --- .../clifford_algebra/basic.lean | 4 ++++ .../clifford_algebra/spin_group.lean | 20 ++++--------------- 2 files changed, 8 insertions(+), 16 deletions(-) diff --git a/src/linear_algebra/clifford_algebra/basic.lean b/src/linear_algebra/clifford_algebra/basic.lean index f6828941f3658..e1deb6fb3335b 100644 --- a/src/linear_algebra/clifford_algebra/basic.lean +++ b/src/linear_algebra/clifford_algebra/basic.lean @@ -7,6 +7,7 @@ Authors: Eric Wieser, Utensil Song import algebra.ring_quot import linear_algebra.tensor_algebra.basic import linear_algebra.quadratic_form.isometry +import tactic.equiv_rw /-! # Clifford Algebras @@ -313,6 +314,9 @@ def invertible_ι_of_invertible (m : M) [invertible (Q m)] : invertible (ι Q m) mul_inv_of_self := by rw [map_smul, mul_smul_comm, ι_sq_scalar, algebra.smul_def, ←map_mul, inv_of_mul_self, map_one] } +def invertible_of_invertible_ι (m : M) [invertible (ι Q m)] [invertible (2 : R)] : + invertible (Q m) := sorry + /-- For a vector with invertible quadratic form, $v^{-1} = \frac{v}{Q(v)}$ -/ lemma inv_of_ι (m : M) [invertible (Q m)] [invertible (ι Q m)] : ⅟(ι Q m) = ι Q (⅟(Q m) • m) := begin diff --git a/src/linear_algebra/clifford_algebra/spin_group.lean b/src/linear_algebra/clifford_algebra/spin_group.lean index cfeee847dcffc..5a5f2526b767e 100644 --- a/src/linear_algebra/clifford_algebra/spin_group.lean +++ b/src/linear_algebra/clifford_algebra/spin_group.lean @@ -45,18 +45,6 @@ section pin open clifford_algebra mul_action open_locale pointwise -section other_PR -def invertible_of_invertible_ι (Q : quadratic_form R M) (m : M) [invertible (ι Q m)] - [invertible (2 : R)] : invertible (Q m) := sorry -lemma ι_mul_ι_mul_inv_of_ι (a b : M) [invertible (ι Q a)] [invertible (Q a)] : - ι Q a * ι Q b * ⅟(ι Q a) = ι Q ((⅟(Q a) * quadratic_form.polar Q a b) • a - b) := sorry -lemma inv_of_ι_mul_ι_mul_ι (a b : M) [invertible (ι Q a)] [invertible (Q a)] : - ⅟(ι Q a) * ι Q b * ι Q a = ι Q ((⅟(Q a) * quadratic_form.polar Q a b) • a - b) := sorry -lemma map_inv_of {R : Type*} {S : Type*} {F : Type*} [mul_one_class R] [monoid S] - [monoid_hom_class F R S] (f : F) (r : R) [invertible r] [invertible (f r)] : - f (⅟r) = ⅟(f r) := sorry -end other_PR - /-- `lipschitz` is the subgroup closure of all the elements in the form of `ι Q m` where `ι` is the canonical linear map `M →ₗ[R] clifford_algebra Q`. -/ def lipschitz (Q : quadratic_form R M) := @@ -82,7 +70,7 @@ begin congr'; simp only [hz.symm, subsingleton.helim (congr_arg invertible hz.symm)], }, letI := invertible_of_invertible_ι Q z, - refine ⟨(⅟(Q z) * quadratic_form.polar Q z b) • z - b, (ι_mul_ι_mul_inv_of_ι z b).symm⟩, }, + refine ⟨(⅟(Q z) * quadratic_form.polar Q z b) • z - b, (ι_mul_ι_mul_inv_of_ι Q z b).symm⟩, }, { rintros x ⟨z, hz1⟩ y ⟨a, ⟨b, hb⟩, ha2⟩, simp only [conj_act.to_conj_act_inv, distrib_mul_action.to_linear_map_apply, has_smul.smul, conj_act.of_conj_act_inv, conj_act.of_conj_act_to_conj_act, @@ -98,7 +86,7 @@ begin congr'; simp only [hz1.symm, subsingleton.helim (congr_arg invertible hz1.symm)], }, letI := invertible_of_invertible_ι Q z, - refine ⟨(⅟(Q z) * quadratic_form.polar Q z b) • z - b, (inv_of_ι_mul_ι_mul_ι z b).symm⟩, }, + refine ⟨(⅟(Q z) * quadratic_form.polar Q z b) • z - b, (inv_of_ι_mul_ι_mul_ι Q z b).symm⟩, }, { simp only [conj_act.to_conj_act_one, one_smul, le_refl], }, { intros x y hx1 hy1 z hz1, simp only [conj_act.to_conj_act_mul] at hz1, @@ -142,7 +130,7 @@ begin { exact subsingleton.helim (congr_arg invertible hz.symm) _ _, }, }, letI := invertible_of_invertible_ι Q z, refine ⟨-((⅟(Q z) * quadratic_form.polar Q z y) • z - y), by simp only - [map_neg, neg_mul, ι_mul_ι_mul_inv_of_ι z y]⟩, }, + [map_neg, neg_mul, ι_mul_ι_mul_inv_of_ι Q z y]⟩, }, { rintros x ⟨z, hz⟩ y, letI := x.invertible, letI : invertible (ι Q z) := by rwa hz, @@ -159,7 +147,7 @@ begin { exact hz.symm, }, }, letI := invertible_of_invertible_ι Q z, refine ⟨-((⅟(Q z) * quadratic_form.polar Q z y) • z - y), by simp only - [map_neg, neg_mul, inv_of_ι_mul_ι_mul_ι z y]⟩, }, + [map_neg, neg_mul, inv_of_ι_mul_ι_mul_ι Q z y]⟩, }, { simp only [units.coe_one, map_one, one_mul, inv_one, mul_one, linear_map.mem_range, exists_apply_eq_apply, forall_const], }, { intros a b ha hb y,