This repository was archived by the owner on Jul 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 294
/
Copy pathabel_ruffini.lean
386 lines (343 loc) · 16.5 KB
/
abel_ruffini.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/-
Copyright (c) 2020 Thomas Browning and Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import group_theory.solvable
import field_theory.polynomial_galois_group
import ring_theory.roots_of_unity
/-!
# The Abel-Ruffini Theorem
This file proves one direction of the Abel-Ruffini theorem, namely that if an element is solvable
by radicals, then its minimal polynomial has solvable Galois group.
## Main definitions
* `solvable_by_rad F E` : the intermediate field of solvable-by-radicals elements
## Main results
* the Abel-Ruffini Theorem `solvable_by_rad.is_solvable'` : An irreducible polynomial with a root
that is solvable by radicals has a solvable Galois group.
-/
noncomputable theory
open_locale classical polynomial
open polynomial intermediate_field
section abel_ruffini
variables {F : Type*} [field F] {E : Type*} [field E] [algebra F E]
lemma gal_zero_is_solvable : is_solvable (0 : F[X]).gal :=
by apply_instance
lemma gal_one_is_solvable : is_solvable (1 : F[X]).gal :=
by apply_instance
lemma gal_C_is_solvable (x : F) : is_solvable (C x).gal :=
by apply_instance
lemma gal_X_is_solvable : is_solvable (X : F[X]).gal :=
by apply_instance
lemma gal_X_sub_C_is_solvable (x : F) : is_solvable (X - C x).gal :=
by apply_instance
lemma gal_X_pow_is_solvable (n : ℕ) : is_solvable (X ^ n : F[X]).gal :=
by apply_instance
lemma gal_mul_is_solvable {p q : F[X]}
(hp : is_solvable p.gal) (hq : is_solvable q.gal) : is_solvable (p * q).gal :=
solvable_of_solvable_injective (gal.restrict_prod_injective p q)
lemma gal_prod_is_solvable {s : multiset F[X]}
(hs : ∀ p ∈ s, is_solvable (gal p)) : is_solvable s.prod.gal :=
begin
apply multiset.induction_on' s,
{ exact gal_one_is_solvable },
{ intros p t hps hts ht,
rw [multiset.insert_eq_cons, multiset.prod_cons],
exact gal_mul_is_solvable (hs p hps) ht },
end
lemma gal_is_solvable_of_splits {p q : F[X]}
(hpq : fact (p.splits (algebra_map F q.splitting_field))) (hq : is_solvable q.gal) :
is_solvable p.gal :=
begin
haveI : is_solvable (q.splitting_field ≃ₐ[F] q.splitting_field) := hq,
exact solvable_of_surjective (alg_equiv.restrict_normal_hom_surjective q.splitting_field),
end
lemma gal_is_solvable_tower (p q : F[X])
(hpq : p.splits (algebra_map F q.splitting_field))
(hp : is_solvable p.gal)
(hq : is_solvable (q.map (algebra_map F p.splitting_field)).gal) :
is_solvable q.gal :=
begin
let K := p.splitting_field,
let L := q.splitting_field,
haveI : fact (p.splits (algebra_map F L)) := ⟨hpq⟩,
let ϕ : (L ≃ₐ[K] L) ≃* (q.map (algebra_map F K)).gal :=
(is_splitting_field.alg_equiv L (q.map (algebra_map F K))).aut_congr,
have ϕ_inj : function.injective ϕ.to_monoid_hom := ϕ.injective,
haveI : is_solvable (K ≃ₐ[F] K) := hp,
haveI : is_solvable (L ≃ₐ[K] L) := solvable_of_solvable_injective ϕ_inj,
exact is_solvable_of_is_scalar_tower F p.splitting_field q.splitting_field,
end
section gal_X_pow_sub_C
lemma gal_X_pow_sub_one_is_solvable (n : ℕ) : is_solvable (X ^ n - 1 : F[X]).gal :=
begin
rcases eq_or_ne n 0 with rfl|hn,
{ rw [pow_zero, sub_self],
exact gal_zero_is_solvable },
have hn'' : (X ^ n - 1 : F[X]) ≠ 0 := X_pow_sub_C_ne_zero hn' 1,
apply is_solvable_of_comm,
intros σ τ,
ext a ha,
simp only [mem_root_set_of_ne hn'', map_sub, aeval_X_pow, aeval_one, sub_eq_zero] at ha,
have key : ∀ σ : (X ^ n - 1 : F[X]).gal, ∃ m : ℕ, σ a = a ^ m,
{ intro σ,
lift n to ℕ+ using hn,
exact map_root_of_unity_eq_pow_self σ.to_alg_hom (roots_of_unity.mk_of_pow_eq a ha) },
obtain ⟨c, hc⟩ := key σ,
obtain ⟨d, hd⟩ := key τ,
rw [σ.mul_apply, τ.mul_apply, hc, τ.map_pow, hd, σ.map_pow, hc, ←pow_mul, pow_mul'],
end
lemma gal_X_pow_sub_C_is_solvable_aux (n : ℕ) (a : F)
(h : (X ^ n - 1 : F[X]).splits (ring_hom.id F)) : is_solvable (X ^ n - C a).gal :=
begin
by_cases ha : a = 0,
{ rw [ha, C_0, sub_zero],
exact gal_X_pow_is_solvable n },
have ha' : algebra_map F (X ^ n - C a).splitting_field a ≠ 0 :=
mt ((injective_iff_map_eq_zero _).mp (ring_hom.injective _) a) ha,
by_cases hn : n = 0,
{ rw [hn, pow_zero, ←C_1, ←C_sub],
exact gal_C_is_solvable (1 - a) },
have hn' : 0 < n := pos_iff_ne_zero.mpr hn,
have hn'' : X ^ n - C a ≠ 0 := X_pow_sub_C_ne_zero hn a,
have hn''' : (X ^ n - 1 : F[X]) ≠ 0 := X_pow_sub_C_ne_zero hn' 1,
have mem_range : ∀ {c}, c ^ n = 1 → ∃ d, algebra_map F (X ^ n - C a).splitting_field d = c :=
λ c hc, ring_hom.mem_range.mp (minpoly.mem_range_of_degree_eq_one F c (h.def.resolve_left hn'''
(minpoly.irreducible ((splitting_field.normal (X ^ n - C a)).is_integral c)) (minpoly.dvd F c
(by rwa [map_id, alg_hom.map_sub, sub_eq_zero, aeval_X_pow, aeval_one])))),
apply is_solvable_of_comm,
intros σ τ,
ext b hb,
simp only [mem_root_set_of_ne hn'', map_sub, aeval_X_pow, aeval_C, sub_eq_zero] at hb,
have hb' : b ≠ 0,
{ intro hb',
rw [hb', zero_pow hn'] at hb,
exact ha' hb.symm },
have key : ∀ σ : (X ^ n - C a).gal, ∃ c, σ b = b * algebra_map F _ c,
{ intro σ,
have key : (σ b / b) ^ n = 1 := by rw [div_pow, ←σ.map_pow, hb, σ.commutes, div_self ha'],
obtain ⟨c, hc⟩ := mem_range key,
use c,
rw [hc, mul_div_cancel' (σ b) hb'] },
obtain ⟨c, hc⟩ := key σ,
obtain ⟨d, hd⟩ := key τ,
rw [σ.mul_apply, τ.mul_apply, hc, τ.map_mul, τ.commutes, hd, σ.map_mul, σ.commutes, hc],
rw [mul_assoc, mul_assoc, mul_right_inj' hb', mul_comm],
end
lemma splits_X_pow_sub_one_of_X_pow_sub_C {F : Type*} [field F] {E : Type*} [field E]
(i : F →+* E) (n : ℕ) {a : F} (ha : a ≠ 0) (h : (X ^ n - C a).splits i) : (X ^ n - 1).splits i :=
begin
have ha' : i a ≠ 0 := mt ((injective_iff_map_eq_zero i).mp (i.injective) a) ha,
by_cases hn : n = 0,
{ rw [hn, pow_zero, sub_self],
exact splits_zero i },
have hn' : (X ^ n - C a).degree ≠ 0 :=
ne_of_eq_of_ne (degree_X_pow_sub_C hn a) (mt with_bot.coe_eq_coe.mp hn),
obtain ⟨b, hb⟩ := exists_root_of_splits i h hn',
rw [eval₂_sub, eval₂_X_pow, eval₂_C, sub_eq_zero] at hb,
have hb' : b ≠ 0,
{ intro hb',
rw [hb', zero_pow' _ hn] at hb,
exact ha' hb.symm },
let s := ((X ^ n - C a).map i).roots,
have hs : _ = _ * (s.map _).prod := eq_prod_roots_of_splits h,
rw [leading_coeff_X_pow_sub_C hn, ring_hom.map_one, C_1, one_mul] at hs,
have hs' : s.card = n := (nat_degree_eq_card_roots h).symm.trans nat_degree_X_pow_sub_C,
apply @splits_of_exists_multiset F E _ _ i (X ^ n - 1) (s.map (λ c : E, c / b)),
rw [leading_coeff_X_pow_sub_one hn, ring_hom.map_one, C_1, one_mul, multiset.map_map],
have C_mul_C : (C (i a⁻¹)) * (C (i a)) = 1,
{ rw [←C_mul, ←i.map_mul, inv_mul_cancel ha, i.map_one, C_1] },
have key1 : (X ^ n - 1).map i = C (i a⁻¹) * ((X ^ n - C a).map i).comp (C b * X),
{ rw [polynomial.map_sub, polynomial.map_sub, polynomial.map_pow, map_X, map_C,
polynomial.map_one, sub_comp, pow_comp, X_comp, C_comp, mul_pow, ←C_pow, hb, mul_sub,
←mul_assoc, C_mul_C, one_mul] },
have key2 : (λ q : E[X], q.comp (C b * X)) ∘ (λ c : E, X - C c) =
(λ c : E, C b * (X - C (c / b))),
{ ext1 c,
change (X - C c).comp (C b * X) = C b * (X - C (c / b)),
rw [sub_comp, X_comp, C_comp, mul_sub, ←C_mul, mul_div_cancel' c hb'] },
rw [key1, hs, multiset_prod_comp, multiset.map_map, key2, multiset.prod_map_mul,
multiset.map_const, multiset.prod_repeat, hs', ←C_pow, hb, ←mul_assoc, C_mul_C, one_mul],
all_goals { exact field.to_nontrivial F },
end
lemma gal_X_pow_sub_C_is_solvable (n : ℕ) (x : F) : is_solvable (X ^ n - C x).gal :=
begin
by_cases hx : x = 0,
{ rw [hx, C_0, sub_zero],
exact gal_X_pow_is_solvable n },
apply gal_is_solvable_tower (X ^ n - 1) (X ^ n - C x),
{ exact splits_X_pow_sub_one_of_X_pow_sub_C _ n hx (splitting_field.splits _) },
{ exact gal_X_pow_sub_one_is_solvable n },
{ rw [polynomial.map_sub, polynomial.map_pow, map_X, map_C],
apply gal_X_pow_sub_C_is_solvable_aux,
have key := splitting_field.splits (X ^ n - 1 : F[X]),
rwa [←splits_id_iff_splits, polynomial.map_sub, polynomial.map_pow, map_X, polynomial.map_one]
at key }
end
end gal_X_pow_sub_C
variables (F)
/-- Inductive definition of solvable by radicals -/
inductive is_solvable_by_rad : E → Prop
| base (a : F) : is_solvable_by_rad (algebra_map F E a)
| add (a b : E) : is_solvable_by_rad a → is_solvable_by_rad b → is_solvable_by_rad (a + b)
| neg (α : E) : is_solvable_by_rad α → is_solvable_by_rad (-α)
| mul (α β : E) : is_solvable_by_rad α → is_solvable_by_rad β → is_solvable_by_rad (α * β)
| inv (α : E) : is_solvable_by_rad α → is_solvable_by_rad α⁻¹
| rad (α : E) (n : ℕ) (hn : n ≠ 0) : is_solvable_by_rad (α^n) → is_solvable_by_rad α
variables (E)
/-- The intermediate field of solvable-by-radicals elements -/
def solvable_by_rad : intermediate_field F E :=
{ carrier := is_solvable_by_rad F,
zero_mem' := by { convert is_solvable_by_rad.base (0 : F), rw ring_hom.map_zero },
add_mem' := is_solvable_by_rad.add,
neg_mem' := is_solvable_by_rad.neg,
one_mem' := by { convert is_solvable_by_rad.base (1 : F), rw ring_hom.map_one },
mul_mem' := is_solvable_by_rad.mul,
inv_mem' := is_solvable_by_rad.inv,
algebra_map_mem' := is_solvable_by_rad.base }
namespace solvable_by_rad
variables {F} {E} {α : E}
lemma induction (P : solvable_by_rad F E → Prop)
(base : ∀ α : F, P (algebra_map F (solvable_by_rad F E) α))
(add : ∀ α β : solvable_by_rad F E, P α → P β → P (α + β))
(neg : ∀ α : solvable_by_rad F E, P α → P (-α))
(mul : ∀ α β : solvable_by_rad F E, P α → P β → P (α * β))
(inv : ∀ α : solvable_by_rad F E, P α → P α⁻¹)
(rad : ∀ α : solvable_by_rad F E, ∀ n : ℕ, n ≠ 0 → P (α^n) → P α)
(α : solvable_by_rad F E) : P α :=
begin
revert α,
suffices : ∀ (α : E), is_solvable_by_rad F α → (∃ β : solvable_by_rad F E, ↑β = α ∧ P β),
{ intro α,
obtain ⟨α₀, hα₀, Pα⟩ := this α (subtype.mem α),
convert Pα,
exact subtype.ext hα₀.symm },
apply is_solvable_by_rad.rec,
{ exact λ α, ⟨algebra_map F (solvable_by_rad F E) α, rfl, base α⟩ },
{ intros α β hα hβ Pα Pβ,
obtain ⟨⟨α₀, hα₀, Pα⟩, β₀, hβ₀, Pβ⟩ := ⟨Pα, Pβ⟩,
exact ⟨α₀ + β₀, by {rw [←hα₀, ←hβ₀], refl }, add α₀ β₀ Pα Pβ⟩ },
{ intros α hα Pα,
obtain ⟨α₀, hα₀, Pα⟩ := Pα,
exact ⟨-α₀, by {rw ←hα₀, refl }, neg α₀ Pα⟩ },
{ intros α β hα hβ Pα Pβ,
obtain ⟨⟨α₀, hα₀, Pα⟩, β₀, hβ₀, Pβ⟩ := ⟨Pα, Pβ⟩,
exact ⟨α₀ * β₀, by {rw [←hα₀, ←hβ₀], refl }, mul α₀ β₀ Pα Pβ⟩ },
{ intros α hα Pα,
obtain ⟨α₀, hα₀, Pα⟩ := Pα,
exact ⟨α₀⁻¹, by {rw ←hα₀, refl }, inv α₀ Pα⟩ },
{ intros α n hn hα Pα,
obtain ⟨α₀, hα₀, Pα⟩ := Pα,
refine ⟨⟨α, is_solvable_by_rad.rad α n hn hα⟩, rfl, rad _ n hn _⟩,
convert Pα,
exact subtype.ext (eq.trans ((solvable_by_rad F E).coe_pow _ n) hα₀.symm) }
end
theorem is_integral (α : solvable_by_rad F E) : is_integral F α :=
begin
revert α,
apply solvable_by_rad.induction,
{ exact λ _, is_integral_algebra_map },
{ exact λ _ _, is_integral_add },
{ exact λ _, is_integral_neg },
{ exact λ _ _, is_integral_mul },
{ exact λ α hα, subalgebra.inv_mem_of_algebraic (integral_closure F (solvable_by_rad F E))
(show is_algebraic F ↑(⟨α, hα⟩ : integral_closure F (solvable_by_rad F E)),
by exact is_algebraic_iff_is_integral.mpr hα) },
{ intros α n hn hα,
obtain ⟨p, h1, h2⟩ := is_algebraic_iff_is_integral.mpr hα,
refine is_algebraic_iff_is_integral.mp ⟨p.comp (X ^ n),
⟨λ h, h1 (leading_coeff_eq_zero.mp _), by rw [aeval_comp, aeval_X_pow, h2]⟩⟩,
rwa [←leading_coeff_eq_zero, leading_coeff_comp, leading_coeff_X_pow, one_pow, mul_one] at h,
rwa nat_degree_X_pow }
end
/-- The statement to be proved inductively -/
def P (α : solvable_by_rad F E) : Prop := is_solvable (minpoly F α).gal
/-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/
lemma induction3 {α : solvable_by_rad F E} {n : ℕ} (hn : n ≠ 0) (hα : P (α ^ n)) : P α :=
begin
let p := minpoly F (α ^ n),
have hp : p.comp (X ^ n) ≠ 0,
{ intro h,
cases (comp_eq_zero_iff.mp h) with h' h',
{ exact minpoly.ne_zero (is_integral (α ^ n)) h' },
{ exact hn (by rw [←nat_degree_C _, ←h'.2, nat_degree_X_pow]) } },
apply gal_is_solvable_of_splits,
{ exact ⟨splits_of_splits_of_dvd _ hp (splitting_field.splits (p.comp (X ^ n)))
(minpoly.dvd F α (by rw [aeval_comp, aeval_X_pow, minpoly.aeval]))⟩ },
{ refine gal_is_solvable_tower p (p.comp (X ^ n)) _ hα _,
{ exact gal.splits_in_splitting_field_of_comp _ _ (by rwa [nat_degree_X_pow]) },
{ obtain ⟨s, hs⟩ := (splits_iff_exists_multiset _).1 (splitting_field.splits p),
rw [map_comp, polynomial.map_pow, map_X, hs, mul_comp, C_comp],
apply gal_mul_is_solvable (gal_C_is_solvable _),
rw multiset_prod_comp,
apply gal_prod_is_solvable,
intros q hq,
rw multiset.mem_map at hq,
obtain ⟨q, hq, rfl⟩ := hq,
rw multiset.mem_map at hq,
obtain ⟨q, hq, rfl⟩ := hq,
rw [sub_comp, X_comp, C_comp],
exact gal_X_pow_sub_C_is_solvable n q } },
end
/-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/
lemma induction2 {α β γ : solvable_by_rad F E} (hγ : γ ∈ F⟮α, β⟯) (hα : P α) (hβ : P β) : P γ :=
begin
let p := (minpoly F α),
let q := (minpoly F β),
have hpq := polynomial.splits_of_splits_mul _ (mul_ne_zero (minpoly.ne_zero (is_integral α))
(minpoly.ne_zero (is_integral β))) (splitting_field.splits (p * q)),
let f : F⟮α, β⟯ →ₐ[F] (p * q).splitting_field := classical.choice (alg_hom_mk_adjoin_splits
begin
intros x hx,
cases hx,
rw hx,
exact ⟨is_integral α, hpq.1⟩,
cases hx,
exact ⟨is_integral β, hpq.2⟩,
end),
have key : minpoly F γ = minpoly F (f ⟨γ, hγ⟩) := minpoly.eq_of_irreducible_of_monic
(minpoly.irreducible (is_integral γ)) begin
suffices : aeval (⟨γ, hγ⟩ : F ⟮α, β⟯) (minpoly F γ) = 0,
{ rw [aeval_alg_hom_apply, this, alg_hom.map_zero] },
apply (algebra_map F⟮α, β⟯ (solvable_by_rad F E)).injective,
rw [ring_hom.map_zero, ← aeval_algebra_map_apply],
exact minpoly.aeval F γ,
end (minpoly.monic (is_integral γ)),
rw [P, key],
exact gal_is_solvable_of_splits ⟨normal.splits (splitting_field.normal _) _⟩
(gal_mul_is_solvable hα hβ),
end
/-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/
lemma induction1 {α β : solvable_by_rad F E} (hβ : β ∈ F⟮α⟯) (hα : P α) : P β :=
induction2 (adjoin.mono F _ _ (ge_of_eq (set.pair_eq_singleton α)) hβ) hα hα
theorem is_solvable (α : solvable_by_rad F E) :
is_solvable (minpoly F α).gal :=
begin
revert α,
apply solvable_by_rad.induction,
{ exact λ α, by { rw minpoly.eq_X_sub_C, exact gal_X_sub_C_is_solvable α } },
{ exact λ α β, induction2 (add_mem (subset_adjoin F _ (set.mem_insert α _))
(subset_adjoin F _ (set.mem_insert_of_mem α (set.mem_singleton β)))) },
{ exact λ α, induction1 (neg_mem (mem_adjoin_simple_self F α)) },
{ exact λ α β, induction2 (mul_mem (subset_adjoin F _ (set.mem_insert α _))
(subset_adjoin F _ (set.mem_insert_of_mem α (set.mem_singleton β)))) },
{ exact λ α, induction1 (inv_mem (mem_adjoin_simple_self F α)) },
{ exact λ α n, induction3 },
end
/-- **Abel-Ruffini Theorem** (one direction): An irreducible polynomial with an
`is_solvable_by_rad` root has solvable Galois group -/
lemma is_solvable' {α : E} {q : F[X]} (q_irred : irreducible q)
(q_aeval : aeval α q = 0) (hα : is_solvable_by_rad F α) :
_root_.is_solvable q.gal :=
begin
haveI : _root_.is_solvable (q * C q.leading_coeff⁻¹).gal,
{ rw [minpoly.eq_of_irreducible q_irred q_aeval,
←show minpoly F (⟨α, hα⟩ : solvable_by_rad F E) = minpoly F α,
from minpoly.eq_of_algebra_map_eq (ring_hom.injective _) (is_integral ⟨α, hα⟩) rfl],
exact is_solvable ⟨α, hα⟩ },
refine solvable_of_surjective (gal.restrict_dvd_surjective ⟨C q.leading_coeff⁻¹, rfl⟩ _),
rw [mul_ne_zero_iff, ne, ne, C_eq_zero, inv_eq_zero],
exact ⟨q_irred.ne_zero, leading_coeff_ne_zero.mpr q_irred.ne_zero⟩,
end
end solvable_by_rad
end abel_ruffini