Skip to content

Commit 4d8970f

Browse files
committed
Populate graph
Signed-off-by: zeramorphic <[email protected]>
1 parent 8b3b407 commit 4d8970f

File tree

3 files changed

+49
-24
lines changed

3 files changed

+49
-24
lines changed

Diff for: blueprint/src/chapters/auxiliary.tex

+2
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,7 @@ \section{Relations}
5353
\end{itemize}
5454
\end{definition}
5555
\begin{proposition}[completing restricted orbits]
56+
\uses{def:OrbitRestriction}
5657
\label{prop:completing_restricted_orbits}
5758
Let \( R : \tau \to \tau \to \Prop \) be a one-to-one relation, and let \( (t, f, \pi) \) be an orbit restriction for \( \field R \) over some type \( \sigma \).
5859
Then there is a permutative relation \( T \) such that
@@ -82,6 +83,7 @@ \section{Relations}
8283
Then there is a permutative relation \( S \) such that \( R \leq S \) and \( \coim S \subseteq \field R \cup s \).
8384
\end{proposition}
8485
\begin{proof}
86+
\uses{prop:completing_restricted_orbits}
8587
Define the orbit restriction \( (s, f, \pi) \) for \( \field R \) over \( \Unit \).
8688
Note that for this to be defined, we used the inequality
8789
\[ \#s \geq \max(\aleph_0, \#\field R) \]

Diff for: blueprint/src/chapters/environment.tex

+7-4
Original file line numberDiff line numberDiff line change
@@ -215,12 +215,15 @@ \section{The structural hierarchy}
215215
If \( \#\tau \leq \#\mu \), then there are at most \( \#\mu \)-many enumerations of \( \tau \): enumerations are determined by an element of \( \kappa \) and a small subset of \( \kappa \times \tau \).
216216
If \( \#\tau < \#\mu \), then there are strictly less than \( \#\mu \)-many enumerations of \( \tau \): use the same reasoning and apply \cref{prop:mk_subset_mk_lt_cof}.
217217
\end{definition}
218-
\begin{definition}[support]
219-
\label{def:StrSupport}
220-
\uses{def:Enumeration,def:Tree}
218+
\begin{definition}[base support]
219+
\label{def:BaseSupport}
220+
\uses{def:Enumeration,def:NearLitter}
221221
A \emph{base support} is a pair \( S = (S^\Atom, S^\NearLitter) \) where \( S^\Atom \) is an enumeration of atoms and \( S^\NearLitter \) is an enumeration of near-litters.
222222
There are precisely \( \#\mu \) base supports.
223-
223+
\end{definition}
224+
\begin{definition}[structural support]
225+
\label{def:StrSupport}
226+
\uses{def:BaseSupport,def:Tree}
224227
A \emph{\( \beta \)-structural support} (or just \emph{\( \beta \)-support}) is a \( \beta \)-tree of base supports.
225228
The type of \( \beta \)-supports is written \( \StrSupp_\beta \).
226229
There are precisely \( \#\mu \) structural supports for any type index \( \beta \).

Diff for: blueprint/src/chapters/foa.tex

+40-20
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ \section{Structural approximations}
164164
\end{definition}
165165
\begin{definition}
166166
\uses{def:StrApprox,def:Inflexible,def:smulApproxSupport}
167-
\label{def:Coherent}
167+
\label{def:StrApprox.Coherent}
168168
A \( \beta \)-approximation \( \psi \) is \emph{coherent} at \( (A, L_1, L_2) \) if:
169169
\begin{itemize}
170170
\item If \( L_1 \) is \( A \)-inflexible with inflexible \( \beta \)-path \( I = (\gamma, \delta, \varepsilon, B) \) and tangle \( t : \Tang_\delta \), then there is some \( \delta \)-allowable permutation \( \rho \) such that
@@ -177,7 +177,7 @@ \section{Structural approximations}
177177
We say that \( \psi \) is \emph{coherent} if whenever \( (L_1, L_2) \in \psi_A^\Litter \), \( \psi \) is coherent at \( (A, L_1, L_2) \).
178178
\end{definition}
179179
\begin{proposition}[adding orbits coherently]
180-
\uses{prop:BaseApprox.addOrbit,def:Coherent}
180+
\uses{prop:BaseApprox.addOrbit,def:StrApprox.Coherent}
181181
\label{prop:StrApprox.addOrbit}
182182
Suppose that \( \psi \) is an approximation and \( L : \mathbb Z \to \Litter \) is a function satisfying the hypotheses of \cref{prop:BaseApprox.addOrbit}.
183183
Let \( \chi \) be the extension produced by the structural version of this result.\footnote{We need the extension exactly as produced (as data), not an arbitrary extension satisfying the conclusion of the proposition.}
@@ -187,8 +187,8 @@ \section{Structural approximations}
187187
This proof just relies on the fact that if \( (\psi_B)_\delta(\supp(t)) = \rho(\supp(t)) \), then the same holds for every extension \( \chi \) of \( \psi \).\footnote{Maybe there's a better lemma to abstract out this idea for this and \cref{prop:StrApprox.chain}?}
188188
\end{proof}
189189
\begin{proposition}
190-
\uses{def:Coherent}
191-
\label{prop:Coherent.inv}
190+
\uses{def:StrApprox.Coherent}
191+
\label{prop:StrApprox.Coherent.inv}
192192
If \( \psi \) is coherent, then \( \psi^{-1} \) is coherent.
193193
\end{proposition}
194194
\begin{proof}
@@ -216,8 +216,8 @@ \section{Structural approximations}
216216
So \( L_2 \) is \( A \)-flexible, as required.
217217
\end{proof}
218218
\begin{proposition}
219-
\uses{def:Coherent}
220-
\label{prop:Coherent.comp}
219+
\uses{def:StrApprox.Coherent}
220+
\label{prop:StrApprox.Coherent.comp}
221221
If \( \psi \) and \( \chi \) are coherent and have equal coimages along all paths, then \( \psi \circ \chi \) is coherent.
222222
\end{proposition}
223223
\begin{proof}
@@ -237,12 +237,12 @@ \section{Structural approximations}
237237
Instead, if \( L_1 \) is \( A \)-flexible, then so is \( L_2 \) by coherence of \( \psi \), and so is \( L_3 \) by coherence of \( \chi \).
238238
\end{proof}
239239
\begin{proposition}
240-
\uses{def:Coherent}
241-
\label{prop:Coherent.deriv}
240+
\uses{def:StrApprox.Coherent}
241+
\label{prop:StrApprox.Coherent.deriv}
242242
If \( \psi \) is a coherent \( \beta \)-approximation and \( A \) is a path \( \beta \tpath \beta' \), then \( \psi_A \) is a coherent \( \beta' \)-approximation.
243243
\end{proposition}
244244
\begin{proof}
245-
\uses{prop:Coherent.inv}
245+
\uses{prop:StrApprox.Coherent.inv}
246246
Let \( (L_1, L_2) \in (\psi_A)_B^\Litter \).
247247
Suppose that \( L_1 \) is \( B \)-inflexible with path \( (\gamma, \delta, \varepsilon, C) \) and \( t : \Tang_\delta \).
248248
Then \( L_1 \) is \( A_B \)-inflexible with path \( (\gamma, \delta, \varepsilon, A_C) \) and the same tangle \( t \).
@@ -252,20 +252,20 @@ \section{Structural approximations}
252252
\[ L_2 = f_{\delta,\varepsilon}(\rho(t)) \]
253253
This same \( \rho \) can thus be used to establish coherence of \( \psi_A \) at \( (B, L_1, L_2) \).
254254

255-
Thus, by \cref{prop:Coherent.inv}, whenever \( L_2 \) is \( B \)-inflexible with path \( I \) and tangle \( t \), \( L_1 \) is also \( B \)-inflexible with path \( I \).
255+
Thus, by \cref{prop:StrApprox.Coherent.inv}, whenever \( L_2 \) is \( B \)-inflexible with path \( I \) and tangle \( t \), \( L_1 \) is also \( B \)-inflexible with path \( I \).
256256
So if \( L_1 \) is \( B \)-flexible, so is \( L_2 \), as required.
257257
\end{proof}
258258

259259
\section{Proving freedom of action}
260260
\begin{definition}[approximates]
261261
\uses{def:StrApprox,def:atomGraph,prop:atomGraph_inv,prop:comp_atomGraph,prop:nearLitterGraph_permutative}
262-
\label{def:Approximates}
262+
\label{def:StrApprox.Approximates}
263263
We say that a \( \beta \)-approximation \( \psi \) \emph{approximates} a \( \beta \)-allowable permutation \( \rho \) if \( \psi_A^\Litter \leq \rho_A^\Litter \) and \( \psi_A^\Atom \leq \rho_A^\Atom \) for each path \( A : \beta \tpath \bot \).
264264
If \( \psi \) approximates \( \rho \) then \( \psi^n \) approximates \( \rho^n \) for each \( n : \mathbb Z \).\footnote{We should define what it means for a base approximation to approximate a near-litter permutation, and define this in terms of that.}
265265
A \( \beta \)-approximation \( \psi \) \emph{exactly approximates} a \( \beta \)-allowable permutation \( \rho \) if \( \psi \) approximates \( \rho \), and in addition, if \( a \) is an atom and \( A : \beta \tpath \bot \), then \( a \notin \coim \psi_A^\Atom \) implies \( \rho(a)^\circ = \rho(a^\circ) \) and \( \rho^{-1}(a)^\circ = \rho^{-1}(a^\circ) \).
266266
\end{definition}
267267
\begin{definition}[freedom of action]
268-
\uses{def:Approximates}
268+
\uses{def:StrApprox.Approximates}
269269
\label{def:FreedomOfAction}
270270
We say that \emph{freedom of action} holds at a type index \( \delta \) if every coherent \( \delta \)-approximation exactly approximates some \( \delta \)-allowable permutation.
271271
\end{definition}
@@ -289,7 +289,7 @@ \section{Proving freedom of action}
289289
Then there is a coherent extension \( \chi \geq \psi \) with \( L \in \coim \chi_A^\Litter \).
290290
\end{proposition}
291291
\begin{proof}
292-
\uses{prop:StrApprox.addOrbit,prop:Coherent.deriv,prop:Coherent.comp,prop:Coherent.inv}
292+
\uses{prop:StrApprox.addOrbit,prop:StrApprox.Coherent.deriv,prop:StrApprox.Coherent.comp,prop:StrApprox.Coherent.inv}
293293
Let \( \rho \) be a \( \delta \)-allowable permutation that \( (\psi_B)_\delta \) approximates.
294294
Then for each \( n : \mathbb Z \), as \( (\psi^n_B)_\delta \) approximates \( \rho^n \), we obtain \( (\psi^n_B)_\delta(\supp(t)) = \rho^n(\supp(t)) \) as \( (\psi^n_B)_\delta \) is defined on all of \( \supp(t) \).\footnote{This should of course be its own lemma.}
295295
Define \( L : \mathbb Z \to \Litter \) by \( L(n) = f_{\delta,\varepsilon}(\rho^n(t)) \).
@@ -316,7 +316,7 @@ \section{Proving freedom of action}
316316
as required.\footnote{It might be helpful to abstract away the lemma \( (\psi^m_B)_\delta(\supp(\rho^n(t))) = \supp(\rho^{n+m}(t)) \) for the two places in the proof where this idea is used.}
317317
\end{proof}
318318
\begin{proposition}
319-
\uses{def:Coherent}
319+
\uses{def:StrApprox.Coherent}
320320
\label{prop:StrApprox.chain}
321321
If \( (\psi_i)_{i : I} \) is a chain of coherent approximations where \( I \) is a linear order, then the supremum \( \psi \) is coherent.
322322
\end{proposition}
@@ -325,7 +325,7 @@ \section{Proving freedom of action}
325325
\end{proof}
326326
\begin{theorem}[freedom of action]
327327
\uses{def:FreedomOfAction}
328-
\label{thm:freedom_of_action}
328+
\label{thm:StrApprox.foa}
329329
Freedom of action holds at all type indices \( \beta \leq \alpha \).
330330
\end{theorem}
331331
\begin{proof}
@@ -351,6 +351,7 @@ \section{Proving freedom of action}
351351

352352
\section{Base actions}
353353
\begin{definition}
354+
\uses{def:NearLitter}
354355
\label{def:Interference}
355356
The \emph{interference} of near-litters \( N_1, N_2 \) is
356357
\[ \interf(N_1, N_2) = \begin{cases}
@@ -360,6 +361,7 @@ \section{Base actions}
360361
which is a small set of atoms.
361362
\end{definition}
362363
\begin{definition}
364+
\uses{def:Interference,def:BaseSupport}
363365
\label{def:BaseAction}
364366
A \emph{base action} is a pair \( \xi = (\xi^\Atom, \xi^\NearLitter) \) such that \( \xi^\Atom \) and \( \xi^\NearLitter \) are one-to-one relations of atoms and near-litters respectively (\cref{def:relation_props}), such that
365367
\begin{itemize}
@@ -376,11 +378,13 @@ \section{Base actions}
376378
\[ (N_1, N_2) \in \xi^\NearLitter \to (N_1^\circ, N_2^\circ) \in \xi^\Litter \]
377379
\end{definition}
378380
\begin{definition}
381+
\uses{def:BaseAction}
379382
\label{def:BaseAction.Nice}
380383
A base action \( \xi \) is \emph{nice} if whenever \( (N_1, N_2) \in \xi^\NearLitter \),
381384
\[ N_1 \symmdiff \LS(N_1^\circ) \subseteq \coim \xi^\Atom;\quad N_2 \symmdiff \LS(N_2^\circ) \subseteq \im \xi^\Atom \]
382385
\end{definition}
383386
\begin{proposition}[extending orbits inside near-litters]
387+
\uses{def:BaseAction}
384388
\label{prop:BaseAction.exists_inside}
385389
Every base action \( \xi \) admits an extension \( \zeta \) satisfying
386390
\[ \forall N \in \coim \xi^\NearLitter,\, N \setminus \LS(N^\circ) \subseteq \coim \xi^\Atom \]
@@ -408,12 +412,14 @@ \section{Base actions}
408412
Hence \( \zeta = (\xi^\Atom \sqcup R, \xi^\NearLitter) \) is a base action and satisfies the conclusion.
409413
\end{proof}
410414
\begin{proposition}[extending orbits outside near-litters]
415+
\uses{def:BaseAction}
411416
\label{prop:BaseAction.exists_outside}
412417
Every base action \( \xi \) admits an extension \( \zeta \) satisfying
413418
\[ \forall N \in \coim \xi^\NearLitter,\, \LS(N) \setminus N \subseteq \coim \xi^\Atom \]
414419
\end{proposition}
415420
\begin{proof}
416-
Without loss of generality (as extensions are transitive), let \( \xi \) satisfy the conclusion of \cref{prop:BaseAction.exists_outside}.
421+
\uses{prop:BaseAction.exists_inside}
422+
Without loss of generality (as extensions are transitive), let \( \xi \) satisfy the conclusion of \cref{prop:BaseAction.exists_inside}.
417423

418424
Let \( L \) be an arbitrary litter that whose litter set does not contain an atom in \( \im \xi^\Atom \) or \( \bigcup \im \xi^\NearLitter \).
419425
Define an injection
@@ -430,20 +436,24 @@ \section{Base actions}
430436
But then as \( \xi \) satisfies the conclusion of \cref{prop:BaseAction.exists_outside}, we have \( N_1 \setminus \LS(N_1^\circ) \subseteq \coim \xi^\Atom \), which again is a contradiction.
431437
\end{proof}
432438
\begin{proposition}
439+
\uses{def:BaseAction.Nice}
433440
\label{prop:BaseAction.exists_nice}
434441
Every base action has a nice extension.
435442
\end{proposition}
436443
\begin{proof}
444+
\uses{prop:BaseAction.exists_outside,prop:BaseAction.exists_inside}
437445
Apply \cref{prop:BaseAction.exists_inside} to \( \xi \) to obtain \( \xi_1 \); apply \cref{prop:BaseAction.exists_inside} again to \( \xi_1^{-1} \) to obtain \( \xi_2 \); apply \cref{prop:BaseAction.exists_outside} to \( \xi_2 \) to obtain \( \xi_3 \), and finally apply \cref{prop:BaseAction.exists_outside} again to \( \xi_3^{-1} \) to obtain \( \xi_4 \), our target.
438446
\end{proof}
439447

440448
\section{Structural actions}
441449
\begin{definition}
450+
\uses{def:Tree,def:BaseAction,def:StrSupport}
442451
\label{def:StrAction}
443452
For a type index \( \beta \), a \emph{\( \beta \)-action} is a \( \beta \)-tree of base actions.
444453
We define an action of \( \beta \)-actions \( \xi \) on \( \beta \)-supports \( S \) by \( (\xi(S))_A = \xi_A(S_A) \).
445454
\end{definition}
446455
\begin{definition}
456+
\uses{def:StrAction,def:Inflexible}
447457
\label{def:StrAction.Coherent}
448458
A \( \beta \)-action \( \xi \) is \emph{coherent} at \( (A, L_1, L_2) \) if:
449459
\begin{itemize}
@@ -457,6 +467,7 @@ \section{Structural actions}
457467
We say that \( \xi \) is \emph{coherent} if whenever \( (L_1, L_2) \in \xi_A^\Litter \), \( \xi \) is coherent at \( (A, L_1, L_2) \).
458468
\end{definition}
459469
\begin{definition}
470+
\uses{def:StrAction,def:StrApprox.Coherent}
460471
\label{def:FlexApprox}
461472
Let \( A : \beta \tpath \bot \).
462473
An \emph{\( A \)-flexible approximation} of a base action \( \xi \) is a base approximation \( \psi \) such that
@@ -472,11 +483,13 @@ \section{Structural actions}
472483
Flexible approximations are coherent.
473484
\end{definition}
474485
\begin{proposition}
486+
\uses{def:FlexApprox}
475487
\label{prop:exists_flexApprox}
476488
Every base action has an \( A \)-flexible approximation.
477489
Hence, every \( \beta \)-action has a flexible approximation, which can be computed branchwise.
478490
\end{proposition}
479491
\begin{proof}
492+
\uses{prop:BaseAction.exists_nice,prop:completing_orbits,prop:completing_restricted_orbits}
480493
If \( \xi \leq \zeta \) and \( \psi \) is an \( A \)-flexible approximation for \( \zeta \), then \( \psi \) is an \( A \)-flexible approximation for \( \xi \).
481494
So it suffices to prove the result for nice base actions \( \xi \) by \cref{prop:BaseAction.exists_nice}.
482495

@@ -520,10 +533,12 @@ \section{Structural actions}
520533
Finally, if \( a_2 \notin \coim S \) and \( a_2^\circ \neq N_2^\circ \), then \( a_2 \notin N_2 \), since \( a_2 \in N_2 \) would imply \( a_2 \in N_2 \symmdiff \LS(N_2^\circ) \), contradicting the fact that \( \xi \) is nice.
521534
\end{proof}
522535
\begin{definition}[approximates]
536+
\uses{def:StrAction,def:ModelData}
523537
\label{def:StrAction.Approximates}
524538
We say that a \( \beta \)-action \( \xi \) \emph{approximates} a \( \beta \)-allowable permutation \( \rho \) if \( \xi_A^\NearLitter \leq \rho_A^\NearLitter \) and \( \xi_A^\Atom \leq \rho_A^\Atom \) for each path \( A : \beta \tpath \bot \).\footnote{Again, we should define what it means for a base action to approximate a near-litter permutation, and define this in terms of that.}
525539
\end{definition}
526540
\begin{proposition}
541+
\uses{def:FlexApprox,def:StrApprox.Approximates,def:StrAction.Approximates}
527542
\label{prop:FlexApprox.smul_nearLitter_eq}
528543
Let \( \xi \) be a base action, and let \( \psi \) be an \( A \)-flexible approximation of it.
529544
Let \( \pi \) be a base permutation that \( \psi \) exactly approximates.
@@ -548,11 +563,13 @@ \section{Structural actions}
548563
which is equal to \( N_2 \) by part of \cref{def:FlexApprox}.
549564
\end{proof}
550565
\begin{proposition}
566+
\uses{def:StrApprox.Coherent,def:FlexApprox,def:StrApprox.Approximates,def:StrAction.Approximates}
551567
\label{prop:approximates_of_flexApprox}
552568
Let \( \xi \) be a coherent \( \beta \)-action, and let \( \psi \) be a flexible approximation for it.
553569
If \( \psi \) exactly approximates some allowable permutation \( \rho \), then \( \xi \) approximates \( \rho \).
554570
\end{proposition}
555571
\begin{proof}
572+
\uses{prop:FlexApprox.smul_nearLitter_eq}
556573
First, note that \( \xi_A^\Atom \leq \psi_A^{E\Atom} \) and \( \psi_A^\Atom \leq \rho_A^\Atom \) give the required result for atoms.
557574
Now suppose that \( (N_1, N_2) \in \xi_A^\NearLitter \); we must show that \( \rho_A(N_1) = N_2 \).
558575
We prove this by induction on \( \iota(N_1) \), generalising over all \( A \).
@@ -572,12 +589,15 @@ \section{Structural actions}
572589
\[ \iota(N) < \iota(t) < \iota(f_{\delta,\varepsilon}(t)) = \iota(N_1^\circ) \]
573590
So we may apply the inductive hypothesis, giving \( (N, ((\rho_B)_\delta)_C(N)) \in ((\xi_B)_\delta)_C^\NearLitter \) as required.
574591
\end{proof}
575-
\begin{proposition}[freedom of action for actions]
576-
Every coherent base action approximates some allowable permutation.
577-
\end{proposition}
592+
\begin{theorem}[freedom of action for actions]
593+
\uses{def:StrAction.Coherent,def:StrAction.Approximates}
594+
\label{thm:StrAction.foa}
595+
Every coherent action approximates some allowable permutation.
596+
\end{theorem}
578597
\begin{proof}
598+
\uses{prop:exists_flexApprox,prop:approximates_of_flexApprox,thm:StrApprox.foa}
579599
Let \( \xi \) be a coherent \( \beta \)-action, and let \( \psi \) be a flexible approximation for it, which exists by \cref{prop:exists_flexApprox}.
580-
Then apply \cref{thm:freedom_of_action} (freedom of action) to \( \psi \) to obtain a \( \beta \)-allowable permutation \( \rho \) that \( \psi \) exactly approximates.
600+
Then apply \cref{thm:StrApprox.foa} (freedom of action) to \( \psi \) to obtain a \( \beta \)-allowable permutation \( \rho \) that \( \psi \) exactly approximates.
581601
Finally, appeal to \cref{prop:approximates_of_flexApprox} to conclude that \( \xi \) approximates \( \rho \).
582602
\end{proof}
583603

0 commit comments

Comments
 (0)