3
3
import numpy as np
4
4
import scipy
5
5
from sklearn .model_selection import train_test_split
6
- from sklearn .metrics import r2_score
7
6
from qstack .regression .kernel_utils import get_kernel , defaults , ParseKwargs
8
7
from qstack .tools import correct_num_threads
9
8
from qstack .mathutils .fps import do_fps
@@ -44,7 +43,6 @@ def regression(X, y, read_kernel=False, sigma=defaults.sigma, eta=defaults.eta,
44
43
for size in train_size :
45
44
size_train = int (np .floor (len (y_train )* size )) if size <= 1.0 else size
46
45
maes = []
47
- r2_scores = []
48
46
for rep in range (n_rep ):
49
47
train_idx = np .random .choice (all_indices_train , size = size_train , replace = False )
50
48
y_kf_train = y_train [train_idx ]
@@ -63,8 +61,7 @@ def regression(X, y, read_kernel=False, sigma=defaults.sigma, eta=defaults.eta,
63
61
alpha = scipy .linalg .solve (K_solve , y_solve , assume_a = 'pos' )
64
62
y_kf_predict = np .dot (Ks , alpha )
65
63
maes .append (np .mean (np .abs (y_test - y_kf_predict )))
66
- r2_scores .append (r2_score (y_test , y_kf_predict ))
67
- maes_all .append ((size_train , np .mean (maes ), np .std (maes ), np .mean (r2_scores )))
64
+ maes_all .append ((size_train , np .mean (maes ), np .std (maes )))
68
65
return maes_all if not save_pred else (maes_all , (y_test , y_kf_predict ))
69
66
70
67
0 commit comments