Skip to content

Commit b30a6e0

Browse files
committed
Removed r2_score from function (TODO: #54)
1 parent 28bd6f4 commit b30a6e0

File tree

1 file changed

+1
-4
lines changed

1 file changed

+1
-4
lines changed

qstack/regression/regression.py

+1-4
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@
33
import numpy as np
44
import scipy
55
from sklearn.model_selection import train_test_split
6-
from sklearn.metrics import r2_score
76
from qstack.regression.kernel_utils import get_kernel, defaults, ParseKwargs
87
from qstack.tools import correct_num_threads
98
from qstack.mathutils.fps import do_fps
@@ -44,7 +43,6 @@ def regression(X, y, read_kernel=False, sigma=defaults.sigma, eta=defaults.eta,
4443
for size in train_size:
4544
size_train = int(np.floor(len(y_train)*size)) if size <= 1.0 else size
4645
maes = []
47-
r2_scores = []
4846
for rep in range(n_rep):
4947
train_idx = np.random.choice(all_indices_train, size = size_train, replace=False)
5048
y_kf_train = y_train[train_idx]
@@ -63,8 +61,7 @@ def regression(X, y, read_kernel=False, sigma=defaults.sigma, eta=defaults.eta,
6361
alpha = scipy.linalg.solve(K_solve, y_solve, assume_a='pos')
6462
y_kf_predict = np.dot(Ks, alpha)
6563
maes.append(np.mean(np.abs(y_test-y_kf_predict)))
66-
r2_scores.append(r2_score(y_test, y_kf_predict))
67-
maes_all.append((size_train, np.mean(maes), np.std(maes), np.mean(r2_scores)))
64+
maes_all.append((size_train, np.mean(maes), np.std(maes)))
6865
return maes_all if not save_pred else (maes_all, (y_test, y_kf_predict))
6966

7067

0 commit comments

Comments
 (0)