-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlp_mincostflow.py
89 lines (69 loc) · 2.68 KB
/
lp_mincostflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from pulp import *
def lp_flow_value(infile):
# initialize
prob = LpProblem("myProblem", LpMinimize)
node_demand_map = {}
expression_to_minimize = []
edge_counter = 1 # make sure each variable has a unique name since some edges appear twice
# formulate the problem
for line in open(infile):
if line.startswith('c'):
continue
# comment line
a = line.split()
if len(a) < 1:
continue
# empty line
if a[0] == 'p':
# "problem line"
# p min <nodes> <arcs>
N = int(a[2])
M = int(a[3]) # probably still irrelevant
elif a[0] == 'n':
# node line
# n <id> <flow>
# we'll consider <flow> to be the demand
# we'll use these later to make the demand constraints
node_demand_map[int(a[1])] = {
'into': [],
'outof': [],
'demand': int(a[2])
}
elif a[0] == 'a':
# edge line
# a <v> <w> <low> <cap> <cost>
v, w, low, cap, cost = [int(i) for i in a[1:]]
# this creates the variable with a unique name
# includes low and high constraints
x = LpVariable("%s_%s_%s" % (v, w, edge_counter), low, cap)
# add to expression to minimize
expression_to_minimize.append(cost*x)
# add to node_demand_map to make demand constaints later
# only nodes with demands were added by the 'n' tag
# need to add the rest manually
if w not in node_demand_map:
node_demand_map[w] = {
'into': [],
'outof': [],
'demand': 0
}
if v not in node_demand_map:
node_demand_map[v] = {
'into': [],
'outof': [],
'demand': 0
}
node_demand_map[w]['into'].append(x)
node_demand_map[v]['outof'].append(x)
edge_counter += 1
for node, data in node_demand_map.iteritems():
prob += (sum(data['into']) - sum(data['outof']) == data['demand'])
# add expression to minimize
prob += sum(expression_to_minimize)
# solve and return min-cost
status = prob.solve()
print LpStatus[status]
return value(sum(expression_to_minimize))
print "Correct value for _40 instance:", lp_flow_value('gte_bad.40') == 52099553858
print "Correct value for _6830 instance:", lp_flow_value('gte_bad.6830') == 299390431788
print "Correct value for _176280 instance:", lp_flow_value('gte_bad.176280') == 510585093810