-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.jl
86 lines (61 loc) · 2.57 KB
/
train.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
using TensorFlow
using Distributions
include("loader.jl")
# dataset = data_loader(240)
# images_train = dataset["train_features"] # println(size(dataset["train_features"]))--> (240, 3072)
# labels_train = dataset["train_labels"] # println(size(dataset["train_labels"]))--> (240, 1)
# images_test = dataset["images_test"] # println(size(dataset["images_test"])) --> (60, 3072)
# labels_test = dataset["labels_test"] # println(size(dataset["labels_test"])) --> (60, 1)
# ########## Freeing space of dataset #################
# dataset = 0
session = Session(Graph())
function weight_variable(shape)
initial = map(Float32, rand(Normal(0, .001), shape...))
return Variable(initial)
end
function bias_variable(shape)
initial = fill(Float32(.1), shape...)
return Variable(initial)
end
function conv2d(x, W)
nn.conv2d(x, W, [1, 1, 1, 1], "SAME")
end
function max_pool_2x2(x)
nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], "SAME")
end
x = placeholder(Float32)
y_ = placeholder(Float32)
W_conv1 = weight_variable([5, 5, 3, 32])
b_conv1 = bias_variable([32])
x_image = reshape(x, [-1, 32, 32, 3])
h_conv1 = nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = reshape(h_pool2, [-1, 7*7*64])
h_fc1 = nn.relu(h_pool2_flat * W_fc1 + b_fc1)
keep_prob = placeholder(Float32)
h_fc1_drop = nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 9])
b_fc2 = bias_variable([9])
y_conv = nn.softmax(h_fc1_drop * W_fc2 + b_fc2)
cross_entropy = reduce_mean(-reduce_sum(y_ .* log(y_conv), reduction_indices=[2]))
train_step = train.minimize(train.AdamOptimizer(1e-4), cross_entropy)
correct_prediction = indmax(y_conv, 2) .== indmax(y_, 2)
accuracy = reduce_mean(cast(correct_prediction, Float32))
run(session, initialize_all_variables())
for i in 1:40
images_train,labels_train = next_batch(16) # randomly generate batches from training dataset
if i%4 == 1
train_accuracy = run(session, accuracy, Dict(x=>images_train, y_=>labels_train, keep_prob=>1.0))
info("step $i, training accuracy $train_accuracy")
end
run(session, train_step, Dict(x=>images_train, y_=>labels_train, keep_prob=>.5))
end
images_test, labels_test = load_test_set() # 60 X 3072, 60 X 1 Arrays
test_accuracy = run(session, accuracy, Dict(x=>images_test, y_=>labels_test, keep_prob=>1.0))
info("test accuracy $test_accuracy")